Applications of the Fiber Optic Sagnac Interferometer - PowerPoint PPT Presentation

1 / 127
About This Presentation
Title:

Applications of the Fiber Optic Sagnac Interferometer

Description:

Applications of the Fiber Optic Sagnac Interferometer Session 6 Session 8 Session 7 Session 1 Session 5 Session 4 Session 3 Session 2 Blue Road Research Sagnac ... – PowerPoint PPT presentation

Number of Views:990
Avg rating:3.0/5.0
Slides: 128
Provided by: physicsAa
Category:

less

Transcript and Presenter's Notes

Title: Applications of the Fiber Optic Sagnac Interferometer


1
Applications of the Fiber Optic Sagnac
Interferometer
Blue Road Research
2
Sagnac Interferometer
  • Part I
  • Rotation Sensing
  • Part II
  • Quasi-Static and Time Varying Sensing

3
Rotation Sensor Characteristics
  • Rate Gyro
  • ? KV
  • ? Rotation rate
  • K Scale factor
  • V Output signal

4
Definition of Terms
  • Rate integration gyro - Integrates angular rate
    to get angular output
  • Fixed bias - Output rotation rate with zero input
    rotation rate
  • Bias drift - Change in output rate over time
    (temperature, wear, etc.)
  • Scale factor - Linearity and hysteresis

5
Rotation Sensor Performance Factors
  • Sensitivity
  • Lowest measurable rotation rate
  • Spectral noise characteristics
  • Dynamic range
  • Turn on time

6
The Sagnac Effect
7
The Sagnac Effect
8
Fiber Optic Gyro Competition
  • Mechanical Gyros
  • Advantages
  • Established industrial base
  • Disadvantages
  • Bearing wear
  • Start-up time
  • Reliability

9
Fiber Optic Gyro Competition
  • Ring Laser Gyros
  • Advantages
  • Established industrial base
  • Replaced mechanical gyros for navigation
  • Disadvantages
  • Mechanical dither
  • Ultraclean vacuum tube technology

10
Fiber Optic Gyro Tradeoffs
  • All solid state
  • Packing flexibility
  • Potentially very long lifetimes
  • Small size
  • Low cost

11
Ring Laser Gyro Assembly
12
Ring Laser Gyro Readout Optics
13
Ring Laser Lock In Zone
14
Open Loop Fiber Optic Gyro
15
Detection Signals
16
Open Loop Fiber Optic Gyro Output
17
Closed Loop Fiber Optic Gyro
18
Scale Factor
19
Correction of Scale Factor
20
First Closed Loop Fiber Optic Gyro
21
First Solid State Fiber Optic Gyro
22
2.5 1980 Fiber Optic Gyro
23
1982 Oil Drilling FOG
24
1983 Closed Loop FOGs
25
First Honeywell Production FOG
26
Litton (NG) FOG IMU
27
The Open Loop Fiber Optic Gyro Marketplace
  • Automobiles and trucks
  • Pointing and tracking
  • Robot navigation
  • Aircraft attitude control
  • Short range air navigation

28
The Closed Loop Fiber Optic Gyro Marketplace
  • Medium to long range aircraft
  • Spacecraft
  • Missiles
  • Launch vehicles
  • Platforms making rapid turns

29
FOG Manufacturers
  • Hitachi
  • Closed loop automotive and low cost FOGs
  • Delivered over supports high end automobiles like
    Lexus navigators, thousands of units per year
  • Japan Aviation Electronics
  • Intermediate grade FOGs for Japan self-defense
    force, variety of commercial applications, soccer
    field grass cutters, cleaning robots, mini-crop
    spraying helicopters

30
FOG Manufacturers (continued)
  • Honeywell
  • Supplies 3 axis FOG navigator for German Dornier
    commuter aircraft, 777 back up navigator
  • Leader in commercial aircraft navigation and
    space based FOG
  • Northrup
  • 3 axis closed loop AHRS units with 0.1-1.0 deg/hr
    performance to full military specifications
  • Working on full navigation grade 0.01 deg/hr FOGs
    targets competing with Honeywell on commercial
    aircraft

31
FOG Manufacturers (continued)
  • Mitsubishi Precision Company
  • Flight tested first space based FOG on Feb. 22,
    1990 aboard S-520-11 rocket
  • Makes both open and closed loop FOGs
  • Photonetics
  • Closed loop 0.1 deg/hr FOGs to support ship
    navigation

32
Estimated FOG Market Size
  • 1995 - 50,000,000
  • 2000 - 100,000,000
  • 2005 - 150,000,000
  • Combination of commercial and military/government
    funded markets

33
Fiber Optic Gyro References
  • S. Ezekiel and H.J. Arditty, Editors, Fiber
    Optic Rotation Sensors, Springer-Verlag, New
    York, 1982.
  • E. Udd, Editor, Fiber Optic Gyros 10th
    Anniversary Conference, SPIE Proc., Vol. 719,
    1986.
  • R.B. Smith, Editor, Selected Papers on Fiber
    Optic Gyros, SPIE Milestone Series, Vol. MS 8,
    1989.

34
Fiber Optic Gyro References (continued)
  • S. Ezekiel and E. Udd, Fiber Optic Gyros 15th
    Anniversary Conference, SPIE Proc., Vol. 1585,
    1991.
  • H. Lefevre, The Fiber Optic Gyroscope, Artech
    House, 1993.
  • W.K. Burns, Editor, Optical Rotation Sensing,
    Academic Press, 1994.

35
Part II
  • Quasi-Static and Time Varying Sensing Using the
    Fiber Optic Sagnac Interferometer

36
Time Varying Environmental Effects-Acoustics
37
Optimized Fiber Coil Configurations
38
Effects of Shielding/Position
39
Time Varying Effects
40
Example Cases
I. G(y,P) A Constant, RP(t) 0 II.
G(y,P) 0, 0ltyltL/2 G(y,P) A Constant,
L/2ltyltL, RP(t) AnL2/4cdP/dt for P
Bsin(?t) RP(t) ABnL2/4c ?sin(?t)
41
Quasi-Static Sensing-Strain
42
Quasi-Static Sensing
ZF F(Ln/c) Suppose ZF Constant 0
dF(Ln/c)FdL(n/c) dF/F -dL/L
43
Sagnac Strain Sensor Cabling
44
Earth Movement Detection System
45
Monitoring Oil Platform Motion
46
Stress on Power Lines
47
Distributed Sagnac Sensors
  • Changing modes from time varying to quasi-static
  • Interlaced Sagnac loops
  • Combination of the Sagnac and Mach-Zehnder
    interferometers

48
Changing Mode Distributed Sensor
49
Interlaced Sagnac Loops
50
Sagnac/Mach-Zehnder
51
Detection of Leaks in Pressurized tanks
52
Coherence Length
53
Basic Sagnac Interferometer Secure Communication
System
54
Basic Intrusion Scenario
55
References for Part II
  • Acoustic Sensors
  • E. Udd, Fiber Optic Acoustic Sensors Based on
    the Sagnac Interferometer, SPIE Proc., Vol. 425,
    p. 90, 1983.
  • K. Krakenes and K. Blotekjaer, Sagnac
    Interferometer for Underwater Sound Detection
    Noise Properties, Optics Letters, Vol. 14, p.
    1152, 1989.

56
References for Part II (continued)
  • Strain Sensors
  • R.J. Michal, E. Udd, and J.P. Theriault,
    Derivative Fiber Optic Sensors Based on the
    Phase Nulling Optical Gyro, SPIE Proc., Vol.
    719, p. 150, 1986.
  • E. Udd, R. Blom, D. Tralli, E. Saaski and R.
    Dokka, Application of the Sagnac Interferometer
    Based Strain Sensor to an Earth Movement
    Detection System, SPIE Proc., Vol. 2191, 1994.

57
References for Part II (continued)
  • Spectrometers and Scale Factor
  • E. Udd, Usage of Dispersive Effects for Scale
    Factor Correction in the Fiber Optic Gyro, SPIE
    Proc., Vol. 1585, p. 255, 1991.
  • Distributed Sensing
  • E. Udd, Sagnac Distributed Sensor Concepts,
    SPIE Proc. 1586, p. 46, 1991.

58
References for Part II (continued)
  • Secure Communication
  • E. Udd, Secure Communication System, U.S.
    Patent 5,223,967, June29, 1993.
  • E. Udd, Secure Communication System, U.S. Patent
    5,274,488, December 28, 1993.

59
The Mach-Zehnder and Michelson Interferometers
and Multiplexing
Blue Road Research
60
Interferometer Basics
Mach-Zehnder
Michelson
Light Source
Light Source
Detector
Detector
Interference requirements Polarization state of
two beams identical Path length difference lt
Coherence length
61
Flexible Geometries, High Sensitivity
62
Basic Elements of the Mach-Zehnder Interferometer
63
Grating Based Homodyne Demodulator
64
Quadrature Demodulation Electronics
65
The Signal Fading Problem
66
Active Feedback
67
3 by 3 Coupler
Light source
1
2
3
120 degree offsets between outputs
68
Phase Generated Carrier
69
The Michelson Interferometer
70
SMARTEC Strain Sensors
71
SMARTEC Strain Sensors (continued)
72
Coatings
73
Compliant Mandrels
74
Transducer Materials
  • Acoustics
  • Nylon
  • Magnetic fields
  • MetGlass, Nickel
  • Electric fields
  • PVF
  • Seismic/Vibration
  • Soft rubber

75
Transducer Geometries
76
Seismic/Vibration Sensor
77
Serial Layout
78
Seismograph Layout
79
Multiplexing Techniques
  • Time division
  • Frequency division
  • Wavelength
  • Coherence
  • Polarization
  • Spatial

80
Time Division Multiplexing
Light source
81
Frequency Division Multiplexing
82
Wavelength Division Multiplexing
83
Coherence Length
84
Coherence Multiplexing
85
Polarization Multiplexing
86
Spatial Multiplexing
87
Extensions of Spatial Multiplexing
88
Distributed Fiber Sensors
  • Optical time domain reflectometers
  • Rayleigh
  • Raman
  • Brillouin
  • Fluorescence

89
Raman Scattering
90
Brillouin Scattering
91
Summary
  • Mach-Zehnder and Michelson interferometers
  • High sensitivity
  • Excellent multiplexing potential
  • Distributed sensors may be used to cover wide
    areas with less sensitivity

92
Fiber Optic Smart Structures for Natural, Civil,
and Aerospace Applications
Blue Road Research
93
Fiber Optic Smart Structures
  • Part I
  • Fundamental concepts and technology
  • Part II
  • Applications

94
Access to Space/Rockets
95
Space Platforms
96
Transport Aircraft SHM
97
Transport Aircraft SHM
98
Military Aircraft SHM
99
Aspects of Fiber Optic Smart Structures
  • Smart manufacturing
  • Nondestructive testing
  • Health and damage assessment
  • Control systems

100
Advantages of Fiber Optic Sensors for Smart
Structures
  • Lightweight/nonobtrusive
  • All passive
  • EMI resistant
  • Environmental ruggedness
  • Multiplexing potential

101
Fiber Optic Smart Structure System
102
Fiber Optic Smart Structure System Technology
  • Fiber/material issues
  • Fiber optic sensors
  • Multiplexing
  • Signal processing
  • System architecture

103
Fiber/Material Issues
  • Fiber coatings
  • Ingress/egress
  • Connectors
  • Wide range of materials
  • Carbon epoxy, polyimides
  • Aluminum, titanium
  • Ceramics, carbon-carbon

104
Fibers Embedded in Carbon Epoxy
105
Polyimide Coating in Thermoplastic
106
Fibers in Titanium Metal Matrix
107
Fiber Optic Sensors-Issues
  • Parameters to be sensed
  • Strain, temperature, viscosity, etc.
  • Gauge length
  • Number of sensors per string
  • Fiber/sensor diameter
  • Dynamic range/sensitivity

108
References for Part I
  • Fiber Optic Sensors An Introduction for
    Engineers and Scientists, Edited by Eric Udd,
    Wiley, 1991 (Chapter 14).
  • SPIE - The International Optical Engineering
    Society Proceedings, Volumes on Fiber Optic
    Sensors and Smart Structures (call for current
    catalogue 206-676-3290).

109
Part II
  • Applications of Fiber Optic Smart Structures

110
Smart Manufacturing
111
Nondestructive Evaluation
112
Damage Assessment in Composite Panel
113
Monitoring Bond Line
114
Embedded Fiber Sensors for a Large Structure
  • Large numbers
  • Thousands to tens of thousands
  • Cost
  • System must be a small fraction of platform cost
  • Must add substantial value
  • Safety, reliability, maintainability

115
Overall Architecture
  • First layer
  • Distributed sensors
  • Localize damage
  • Measure ambient conditions
  • Second layer
  • Multiplexed discrete sensors
  • Reconfigurable
  • Detailed assessment

116
First Layer Coverage
  • Low cost distributed sensors or long gauge length
    sensor networks
  • Low to medium accuracy
  • Temperature distribution
  • Acoustics
  • Wide area strain changes

117
First Layer Coverage Candidates
  • Blackbody sensor - networks
  • Microbend sensor - networks
  • Distributed sensors
  • Rayleigh
  • Raman
  • Brillouin
  • Fluorescence
  • Interleaved interferometric

118
Second Layer Coverage
  • Discrete, high performance sensor arrays
  • Detailed damage/health assessment of designated
    area
  • Reconfigurable to minimize processing
    requirements
  • Redundant

119
Second Layer Sensor Criteria
  • Single Point of Ingress/Egress
  • Amplitude independence
  • Compatible with in-line multiplexing
  • Low cost and manufacturable
  • No larger than fiber diameter

120
Second Layer Sensor Candidates
  • Fabry-Perot etalons
  • Fiber gratings

121
Modular Architecture
122
Avionics Example
123
Civil Structures
124
Natural Structures
  • Geophysical fault line monitors
  • Earth movement around oil platforms
  • Strain induced by earth movement on high voltage
    lines

125
Manufacturing
  • Environmental Control
  • Water and air chemistry
  • Process control
  • Oven temperature, pressure
  • Valve position, liquid levels
  • Flow rate
  • Health monitoring
  • Vibration

126
Medicine
  • Chemistry of the blood
  • Oxygen content
  • Dosage levels
  • Internal inspection
  • Blood vessels
  • Intestines
  • Stomach
  • Power delivery
  • Potential for artificial limbs, nerves

127
References for Part II
  • Fiber Optic Sensors An Introduction for
    Engineers and Scientists, Edited by Eric Udd,
    Wiley, 1991.
  • Eric Udd, Fiber Optic Smart Structures, Chapter
    14.
Write a Comment
User Comments (0)
About PowerShow.com