Bounded Independence Fools Halfspaces - PowerPoint PPT Presentation

About This Presentation
Title:

Bounded Independence Fools Halfspaces

Description:

Claim: (J k)-wise independent fools h. Proof: Fixing J variables ... Other variables x J still 2-wise independent. w J x J concentrated rarely changes outcome ... – PowerPoint PPT presentation

Number of Views:51
Avg rating:3.0/5.0
Slides: 25
Provided by: ccs4
Category:

less

Transcript and Presenter's Notes

Title: Bounded Independence Fools Halfspaces


1
Bounded IndependenceFools Halfspaces
  • Emanuele Viola
  • Northeastern University
  • work partially done at Columbia University
  • Joint work with
  • Ilias Diakonikolas, Parikshit Gopalan,
  • Ragesh Jaiswal, Rocco Servedio
  • April 2009

2
Halfspaces
  • Halfspace (a.k.a. Threshold)
  • h -1,1n ? -1,1
  • h(x) sign(wx t) sign(w1x1
    wnxn - t)
  • weights w1, , wn, t ? R
  • Studied in complexity (NP ?? halfspace of
    halfspaces)
  • learning (Perceptron,
    Winnow, ...)
  • social choice

3
Examples of halfspaces
  • h -1,1n ? -1,1 h(x) sign(w1x1 wnxn
    - t)
  • Majority(x) sign( x1 xn )
  • AND(x) sign( x1 xn - n 1/2 )
  • x gt y? sign( 2n(xn - yn) 2n-1(xn-1 - yn-1)
    21(x1 - y1) )
  • weights w1, , wn can be taken integer need wi gt
    2n

4
Our results
  • Def. Distribution D over -1,1n is k-wise
    independent if
  • projection on any k coordinates is uniform
    over -1,1k
  • Thm Any such D ?-fools any halfspace h -1,1n
    ? -1,1
  • Ex?uniform h(x) - Ex?D h(x) ?
  • where k (1/?)2 polylog(1/?)
  • Optimal up to polylog(1/?)
  • D (x1, x2, , xk, ?i?k xi, ) h(x)
    sign(?i?k1 xi )

5
Our results on generators
  • k-wise independent distribution on -1,1n
  • can be generated with s (log n)k random
    bits
  • Alon Babai
    Itai Chor Goldreich '85
  • Corollary Explicit generator G -1,1s ?
    -1,1n that
  • ?-fools any halfspace h -1,1n ? -1,1
  • Ex?uniform h(x) - EY h(G(Y)) ?
  • where s (log n)(1/?)2 polylog(1/?)
  • First generator for halfspaces

6
Our generator vs. others
  • Our result Explicit generator G -1,1s ?
    -1,1n that
  • ?-fools halfspaces h(x) sign(w1x1
    wnxn - t)
  • with s (log n) poly(1/?)
  • Nisan ('92) fools if weights wi ?
    1,...,poly(n), S gt log2n
  • Rabani Shpilka ('08) G -1,1s ? -1,1n
  • hits h-1(1) (when gt ?), does not fool, s
    O(log n/?)

7
Progress on generators 2005 - now
  • Random walks Trevisan Vadhan Reingold
  • Polynomials Bogdanov V., Lovett
  • Constant-depth circuits Bazzi, Razborov,
    Braverman
  • Halfspaces Rabani Shpilka, this talk
  • Challenges (1) RL ? L
  • (2) Fool width-3 read-once branching program,
    s O(log n)

8
Outline
  • Overview and our results
  • Proof

9
Recall our result
  • Def. Distribution D over -1,1n is k-wise
    independent if
  • projection on any k coordinates is uniform
    over -1,1k
  • Thm Any such D ?-fools any halfspace h -1,1n
    ? -1,1
  • Ex?uniform h(x) - Ex?D h(x) ?
  • where k (1/?)2 polylog(1/?)

10
Proof overview
  • Case analysis based on structure of halfspace
  • Servedio 2007 Rabani Shpilka 2008
  • Def. halfspace h(x) sign(wx - t)
    sign(w1x1wnxn- t)
  • regular if every wi small w.r.t. (Si
    wi2)1/2 (at most e frac.)
  • regular ? wx ? Normal(0, Si wi2)
  • Berry-Esséen

11
Outline
  • Overview and our results
  • Proof
  • Regular halfspaces
  • Non-regular halfspaces

12
Sandwich approximation
  • Lemma Bazzi, Benjamini Gurel-Gurevich Peled
  • h -1,1n ? -1,1 is e-fooled by k-wise ind.
    distributions
  • ?
  • ? degree-k polynomials qu,ql -1,1n ? R
  • (1) ql(x) ? h(x) ? qu(x) ? x ? -1,1n
  • (2) EX ? -1,1nqu(X) h(X) ? e , Eh(X)
    ql(X) ? e
  • Proof (?) If D k-wise independent, X uniform
  • E h(D) E h(X)
  • ? E qu(D) Eql(X) (1)
  • ? E qu(X) Eql(X) because qu has
    degree k
  • ? 2e (2)
    Q.e.d.

13
Construction of qu
  • Build univariate P R?R approximator to sign
    R?-1,1
  • qu(x) P(w1x1
    wnxn)
  • (t 0 and ignore
    scaling)

1
0
wx
-1
14
Properties of P
P degree k (1/e)2 (a) ? x P(x) ? sign(x)
(b) ? x ? M P(x) - sign(x) lt e (c) M gt 1,
C lt e h(x) sign(wx) qu(x) P(wx)
1
0
wx
-1
C
M
M
Assuming P, we show how to fool regular h
15
Correctness of qu
P degree k (1/e)2 (a) ? x P(x) ? sign(x)
(b) ? x ? M P(x) - sign(x) lt e (c) M gt 1,
C lt e h(x) sign(wx) qu(x) P(wx)
1
0
wx
-1
C
M
M
Want (1) h(x) ? qu(x) ? x (2) EXqu(X) h(X) ?
e
16
Correctness of qu
P degree k (1/e)2 (a) ? x P(x) ? sign(x)
(b) ? x ? M P(x) - sign(x) lt e (c) M gt 1,
C lt e h(x) sign(wx) qu(x) P(wx)
1
0
wx
-1
C
M
M
Want (1) h(x) ? qu(x) ? x Given by (a)
Q.e.d.
17
Correctness of qu
P degree k (1/e)2 (a) ? x P(x) ? sign(x)
(b) ? x ? M P(x) - sign(x) lt e (c) M gt 1,
C lt e h(x) sign(wx) qu(x) P(wx)
1
0
wx
L
-1
C
M
M
Want (2) EXqu(X) h(X) ? e - Pr wx ? C lt
e (c) h regular ( wx ?
normal) - wx ? M ? qu(X) h(X) lt e (b) - Pr
wx L lt e/qu(L)
Q.e.d.
18
Construction of P Approximation Theory
P degree k (1/e)2 (a) ? x P(x) ? sign(x)
(b) ? x ? M P(x) - sign(x) lt e (c) M gt 1,
C lt e h(x) sign(wx) qu(x) P(wx)
1
0
wx
-1
C
M
M
P best uniform approximation to sign on M
(a) Chebychev alternation theorem
(b,c) Jackson theorem
19
Outline
  • Overview and our results
  • Proof
  • Regular halfspaces
  • Non-regular halfspaces

20
Non-regular halfspaces
  • Halfspace h(x) sign(w1x1wnxn- t)
  • Recall regular ? wi small w.r.t. (Si wi2)1/2
    (at most e fraction)
  • Definition critical index minimum number of
    variables
  • to fix to make halfspace regular
  • Example
  • Case analysis based on critical index vs. J
    (1/e)2

critical index 3
21
Case small critical index
  • If h has small critical index lt J (1/e)2
  • recall fool regular halfspace with (k
    (1/e)2)-wise indep.
  • Claim (J k)-wise independent fools h
  • Proof Fixing J variables ? halfspace regular and

  • still k-wise independence


  • Q.e.d.

22
Case large critical index
  • If h has large critical index gt J (1/e)2
  • ? ? J large weights w1, , wJ
  • Claim ? (J 2)-independent distribution
  • with high probability x1, , xJ determine
    outcome
  • Proof
  • Uniform x1, , xJ ? w1 x1 wJ xJ large
  • Other variables xgtJ still 2-wise independent
  • ? wgtJ xgtJ concentrated ? rarely
    changes outcome


  • Q.e.d.

23
Conclusion
  • Thm k-wise indep. D ?-fool halfspaces h
    -1,1n?-1,1
  • E h(X) - E h(D) ?
    for k (1/?)2 polylog(1/?)
  • Tight up to polylog(1/?)
  • Corollary First generator G -1,1s ? -1,1n
    that
  • ?-fools halfspaces seed s (log n)
    (1/?)2 polylog(1/?)
  • Open Improve dependence on e. s O(log (n/e))
    ?
  • Higher degree? E.g. h(x)
    sign(?wi,jxixj - t)

24
  • ????????????????????????
Write a Comment
User Comments (0)
About PowerShow.com