Results from the Mars Express Active Ionospheric Sounder - PowerPoint PPT Presentation

1 / 61
About This Presentation
Title:

Results from the Mars Express Active Ionospheric Sounder

Description:

3Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona ... For Solar System Research, Katlenburg-Lindau, Germany ... – PowerPoint PPT presentation

Number of Views:57
Avg rating:3.0/5.0
Slides: 62
Provided by: issiU
Category:

less

Transcript and Presenter's Notes

Title: Results from the Mars Express Active Ionospheric Sounder


1
Results from the Mars Express Active Ionospheric
Sounder
  • D. D. Morgan1, D. A. Gurnett1, D. L. Kirchner1,
    F. Duru1, R. L. Huff1, D. A. Brain2, W. V.
    Boynton3, M. H. Acuña4, E. Nielsen5, A.
    Safaeinili6, J. J. Plaut6, G. Picardi7
  • 1Department of Physics and Astronomy, University
    of Iowa, Iowa City, Iowa
  • 2Space Physics Research Group, Space Sciences
    Laboratory, University of California, Berkeley,
    California
  • 3Lunar and Planetary Laboratory, University of
    Arizona, Tucson, Arizona
  • 4NASA Goddard Space Flight Center, Greenbelt,
    Maryland
  • 5Max-Planck-Inst. For Solar System Research,
    Katlenburg-Lindau, Germany
  • 6Jet Propulsion Laboratory, Pasadena, California
  • 7Infocom Department, La Sapienza, University of
    Rome, Rome, Italy

2
Mars Express Dec. 25, 2003
P-03-14
Dipole Antenna 2 x 20 m
3
Mars Express Orbit
4
Nominal Mars Express Orbital Parameters at
Insertion
  • Orbital Inclination 86.3
  • Apocenter 11,560 km (altitude)
  • Pericenter 258 km (altitude)
  • Orbital period 7.5 h
  • Observing time about periapsis 1h

5
Mars Express Radar Transmitter
6
Mars Express Spacecraft
7
Summary of Active Ionospheric Sounder sequence
  • 160 frequencies sampled between 0.1 and 5.4 MHz
    (receive frequencies can be varied).
  • 1 pulse every 7.857 ms, bandwidth 10 kHz
  • 80 receive times per frequency , 91.4 µs/sample
  • Complete cycle every 7.543 s (data rate limited).

8
Timing of AIS data
9
Radar Reflections from the Ionosphere
10
Ionogram inversion
  • Time delay equation

11
Example Ionogram
12
Topics of Interest
  • Maximum electron density and total electron
    content
  • Detection of magnetic fields
  • Double and complex traces and oblique echoes
  • Surface reflection and ionospheric absorption
  • Ionogram inversion
  • Spacecraft local electron density
  • Total electron content

13
Maximum electron density and total electron
content
14
Maximum Electron Density Versus Solar Zenith Angle
From Gurnett et al.,2005
15
Safaeinili et al. LPSC, 2006
16
Spacecraft-local electron density
17
Inbound Electron Density Orbit 2018
18
Inbound Electron Density Orbit 2032
19
Inbound Electron Density Orbit 1994
20
Log10 ne
21
Ionogram inversion
  • Time delay equation

22
Radar Reflections from the Ionosphere
23
(No Transcript)
24
Corrected altitude
Apparent altitude
25
(No Transcript)
26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
(No Transcript)
31
(No Transcript)
32
(No Transcript)
33
(No Transcript)
34
Detection of magnetic fields
35
(No Transcript)
36
Electron Cyclotron Echoes
37
Comparison of the Measured and Model Magnetic
Field Strength
38
Electron Cyclotron Echoes, Video/Audio
39
Double and Complex Ionospheric Traces
40
Oblique Echoes
41
(No Transcript)
42
Comparison of Oblique Echoes to Crustal Magnetic
Fields
43
Oblique Echoes and Crustal Magnetic Fields
44
Best Fit Range to a Fixed Target
45
(No Transcript)
46
Surface reflection and ionospheric absorption
47
Surface reflection visibility statistic
  • V 0 for not visible or 1 for visible,
    tabulated for each ionogram.
  • We select ionograms at 850 km 10 km altitude
    (10 ionograms) and average v.

48
Comparison with other data sets
  1. Averaged surface reflection visibility.
  2. Background of Mars Global Surveyor Electron
    Reflectometer (gt10 MeV) with two hour smoothing
    to remove orbit signature.
  3. Background of Mars Odyssey Gamma Ray Spectrometer
    (gt 10 MeV).
  4. GOES-12 Solar Environment Monitor soft x-ray flux
    (Earth).
  5. NOAA daily X and M class flare counts.

49
Overview of data
50
Table 1 Absorption Events
  • Event Start End
    ?T, days
  • 1 20050710-0931 20050725-0833
    15.0
  • 2 20050801-0633 20050808-1406
    7.3
  • 3 20050823-0310 20050827-0751
    4.2
  • 4 20050901-0223 20050904-1112
    3.4
  • 5 20050905-1353 20050923-1816
    18.2 ?

51
  • Event 1
  • Start 20050710-0931
  • End 20050725-0833
  • Duration 15.0 d

52
Event 2 Start 20050801-0633 End
20050808-1406 Duration 7.3 d
53
Event 3 Start 20050823-0310 End
20050827-0751 Duration 4.2 d
54
Event 4 Start 20050901-0223 End
20050904-1112 Duration 3.4 d
55
Event 5 Start 20050905-1353 End
20050923-1816 Duration 18.2 d (?)
56
Surface reflection visibility variation with Mars
geodetic longitude and latitude
  • Why? Wed like to see if the crustal fields
    affect the surface reflection.
  • Bins are 10 in latitude and 20 in longitude.
  • Altitudes lt 1000 km are selected.
  • Absorption events are removed.

57
Surface reflection visibility as a function of
Mars latitude and longitudeData from July 4
December 14, 2005
58
Surface reflection visibility (absorption events
removed) as a function of solar zenith angle
59
Appendix Electron-neutral collision damping at
Mars








  • Full dispersion relation
    Imaginary part Thermal
    speed

Real part
Electron-neutral collision frequency
Imaginary part f fpe
eneutral cross section (Strangeway, 1996)
Group velocity
60
(No Transcript)
61
Conclusion
  • Absorption of the surface reflection corresponds
    extremely well and in detail with enhancements in
    solar energetic particle flux.
  • Energetic ions can penetrate the night side of
    Mars due to their cyclotron radius gt 0.10 R?
  • Surface reflection visibility is an increasing
    function of solar zenith angle, with near 100
    visibility on the night side.
Write a Comment
User Comments (0)
About PowerShow.com