Phase retrieval of complex ultrashort pulses using multipleshearing spectral interferometry - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Phase retrieval of complex ultrashort pulses using multipleshearing spectral interferometry

Description:

Phase retrieval of complex ultrashort pulses using multiple-shearing ... Stretcher. Amplifier. Compressor. Chirped-pulse amplifier. Test pulse synthesis ... – PowerPoint PPT presentation

Number of Views:95
Avg rating:3.0/5.0
Slides: 23
Provided by: physic68
Category:

less

Transcript and Presenter's Notes

Title: Phase retrieval of complex ultrashort pulses using multipleshearing spectral interferometry


1
Phase retrieval of complex ultrashort pulses
using multiple-shearing spectral interferometry
  • Dane. R. Austin, Tobias Witting, and Ian A.
    Walmsley
  • Clarendon Laboratory, University of Oxford, UK

TexPoint fonts used in EMF. Read the TexPoint
manual before you delete this box. AAAAAAAAAA
2
Outline
  • Complexity in ultrashort pulse characterization
  • Applications of complex ultrashort pulses
  • Spectral shearing interferometry
  • Theory
  • Scaling with pulse complexity
  • Introduction to multiple shear reconstruction
  • Experiment
  • Summary
  • Outlook

3
Complexity in ultrashort pulse characterization
(Sampling theorem)
4
Applications of complex ultrashort pulses
Dudley et al. Opt. Express, 2008, 16, 3644-3651
Brixner et al. Phys. Rev. Lett., 2004, 92, 208301
Hauri et al. Appl. Phys. B, 2004, 79, 673-677
Stibenz and Steinmeyer Rev. Sci. Instrum., 2006,
77, 073105
5
Externally referenced methods
  • Spectral interferometry

O(N) samples required
Fittinghoff et al. Opt. Lett., 1996, 21, 884-886
  • XFROG

O(N2) samples required
O(N2 log N) reconstruction time
Gu et al. Opt. Lett., 2002, 27, 1174-1176
6
Self-referenced methods
  • FROG

Simulation
O(N2) samples required
O(N2 log N) reconstruction time
Xu et al. J. Opt. Soc. Am. B, 2008, 25, A70-A80
  • Spectral shearing interferometry

O(N) samples required
O(N) reconstruction time
SPIDER, ZAP-SPIDER, SEA-SPIDER,
CAR-SPIDER, SPIRIT, Gold-SPIDER, HOT-SPIDER,
M-SPIDER, Micro-SPIDER, Self-diffraction
SPIDER 2DSI, SPIRIT
Iaconis and Walmsley Opt. Lett., 1998, 23,
792-794
7
Spectral shearing interferometry
8
Noise sensitivity
Anderson et al. Appl. Phys. B, 2000, 70, 85-93
9
Spectral nulls relative phase ambiguity
Keusters et al. J. Opt. Soc. Am. B, 2003, 20,
2226-2237
take complex argument
10
Multiple shear reconstruction
Preprocessing O(N)
Solution of banded linear equations O(N)
11
Numerical example
12
Experiment
Spectral range 375 425 nm Minimum shear 0.24
nm ? T 2.24 ps N 215, 36 x transform limit
13
Results
RMS TBP 11.9, 24 x transform limit
RMS field variation 0.02 (double shear) vs 0.12
(single shear)
14
Summary
  • Spectral shearing precision scales inversely with
    TBP
  • Advantages of multi-shear
  • small shear to track fine features
  • large shear to correct accumulated error
  • large shear to cross spectral nulls
  • Implementation
  • efficient, direct, linear least squares
  • requires additional preprocessing
  • Experiment
  • Spatially encoded SPIDER with external ancilla
  • Six-fold precision improvement

15
Outlook
Nonlinear pulse compression (HCF, filaments)
pushed to the limit
Electro-optic SPIDER easily adjustable shear
Bromage et al. Opt. Lett., 2006, 31, 3523-3525
Simultaneous acquisition of many shears
Bohman et al. Opt. Express, 2008, 16, 10684-10689
Gorza et al. Opt. Express, 2007, 15, 15168-15174
  • Details submitted to JOSA B

16
Appendices
17
Implementation - preprocessing
Preprocess for self-consistency
18
Implementation least squares solution
19
Experiment
Chirped-pulse amplifier
TiSaphhire oscillator
Test pulse synthesis
Test pulse
Stretcher
Amplifier
Compressor
Multiple shear SPIDER
Chirped ancilla
Spectral range 375 425 nm Minimum shear 0.24
nm -gt T 2.24 ps N 215, 36 x transform limit
20
Raw data
21
Processing
SNR ¼ 50
22
Numerical example
Write a Comment
User Comments (0)
About PowerShow.com