DYNAMIC MODELING AND PARAMETER ESTIMATION FOR AN ETHYLENEPROPYLENEDIENE POLYMERIZATION PROCESS - PowerPoint PPT Presentation

1 / 37
About This Presentation
Title:

DYNAMIC MODELING AND PARAMETER ESTIMATION FOR AN ETHYLENEPROPYLENEDIENE POLYMERIZATION PROCESS

Description:

DYNAMIC MODELING AND PARAMETER. ESTIMATION FOR AN. ETHYLENE-PROPYLENE-DIENE ... g: moment, PDB: PDB concentration, PDB:PDB mole fraction ... – PowerPoint PPT presentation

Number of Views:168
Avg rating:3.0/5.0
Slides: 38
Provided by: Li12
Category:

less

Transcript and Presenter's Notes

Title: DYNAMIC MODELING AND PARAMETER ESTIMATION FOR AN ETHYLENEPROPYLENEDIENE POLYMERIZATION PROCESS


1
DYNAMIC MODELING AND PARAMETERESTIMATION FOR
ANETHYLENE-PROPYLENE-DIENEPOLYMERIZATION
PROCESS
LOUISIANA STATE UNIVERSITY AND AGRICULTURAL AND
MECHANICAL COLLEGE
  • Rujun Li
  • Major Professors Dr. Kerry Dooley
  • Dr. Armando Corripio
  • Gordon A. and Mary Cain
  • Department of Chemical Engineering
  • June 23, 2003

2
OUTLINE
  • Introduction
  • EPDM Background
  • Research Objectives
  • Dynamic Modeling
  • Broad MWD and Crosslinking
  • Off-line Parameter Estimation
  • Parameter Selection Procedure
  • Steady-State Detection
  • Offline Parameter Estimation
  • On-line State Estimation

3
INTRODUCTION
  • EPDM
  • Properties chemical, oil and ozone resistance
  • Applications tires, seals, hoses, roofing
  • Manufacturing
  • Cat Ziegler-Natta V(Ti) halide/aluminum alkyl
  • Process solution/slurry, CSTR/PFR
  • Diene ENB

4
  • BASIC MECHANISM (Cozewith, AIChE J, 1988)
  • Activation C1?C2 ka
  • Deactivation C1?D kx, C1M2(M3)?D kx2, kx3
  • Initiation C2M1(M2)?P100(Q010) ki1, ki2
  • Propagation PijkM1(M2, M3)?Pi1jk(Qij1k,
    Rijk1) k11, k12, k13
  • QijkM1(M2)?Pi1jk(Qij1k) k21, k22
  • RijkM1?Pijk1 k31
  • Termination Pijk(Qijk, Rijk)? Uijk(Vijk, Wijk)
    kt
  • Pijk(Qijk, Rijk)M2? Uijk(Vijk, Wijk)
    kt2
  • Pijk(Qijk, Rijk)M3? Uijk(Vijk, Wijk)
    kt3
  • Chain Transfer Pijk(Qijk, Rijk)H2? Uijk(Vijk,
    Wijk)C2 ktr1
  • Pijk(Qijk, Rijk)Al? Uijk(Vijk, Wijk)P100
    ktr
  • Pijk(Qijk, Rijk)M2? Uijk(Vijk, Wijk)Q010
    ktrm2

5
RESEARCH OBJECTIVES
  • Dynamic Modeling
  • Basic predict Rx T, polyrate, contents, etc.
  • Model broad MWD
  • Offline Parameter Estimation
  • Determine parameters to be estimated
  • Extract reliable steady-state info from plant
    data
  • Obtain parameter estimates
  • On-Line State Estimation
  • Different measurement frequencies and time delays
  • Parametric/structural mismatch

6
DYNAMIC MODELING OF CROSSLINKING
  • Mechanism Pendant double bond (PDB)

7
  • Gelation
  • Physical polymer network, insoluble in typical
    solvents.
  • Mathematical infinite second moments,
  • Modeling Gelation
  • Typical moment method fails
  • Florys statistical method only works for batch
  • Monte Carlo difficult to apply to online
  • Numerical fractionation potential for success

8
Numerical Fractionation
  • Chains are partitioned into generations
  • Zeroth linear
  • First two 0-th crosslink
  • i-th crosslinks with jth
  • Each generation has finite second moments
  • Use finite number of generations
  • Apply moment method for each generation

9
Numerical Fractionation for EPDM
  • Fails at gel point because of large difference in
    order of magnitude of moments within and across
    generations
  • Alternative pseudo-homopolymer
  • Pseudo-Kinetic Constant Approach
  • Quasi-Steady State Assumption
  • Long Chain Assumption

10
Pseudo-Kinetic Constant Approach
  • Pseudo-monomer and pseudo-homopolymer
  • Reactions
  • NF moment equations m-th generation
  • g moment, PDB PDB concentration, ?PDBPDB mole
    fraction

11
  • Non-Closure problem Saidel Katz approximation
  • Number of generations
  • Steady-state 5
  • Dynamic 11

kc3.12kc,c
12
Sol fraction vs. t
Gel appears earlier and in larger amount if kc is
larger
13
Steady-State Sol Fraction vs. kc
xsol decreases with kc in a linear fashion
14
Steady-State Polydispersity vs. kc
Max Pd is obtained when kc is just over kc,c
15
MWD Reconstruction
At gel point, lowest peak value
16
MWD Reconstruction
At gel point, longest tail
17
Offline Parameter Estimation
  • Challenges
  • Lack of measurements
  • Monomer, polymer concentrations cannot be
    measured
  • Indirect measurements, no reliable correlations
  • Mooney viscosity, Mooney relaxation
  • Limited data
  • Operation within a limited range
  • All parameters cannot be estimated
  • Must select subset of parameters for estimation
  • FIM-based procedures cannot give consistent
    selections

18
Parameter Identifiability Measures
  • Relative sensitivity matrix K
  • Overall effect Principal Component Analysis
    (PCA)
  • Collinearity

19
Parameter Selection Procedure
  • Select
  • Compute
  • Select the N1-th highest ranked parameter
  • Repeat steps 2 and 3 until stop criteria meet

20
Effect of Perturbation
21
Nonlinear Extension
  • Multiple perturbations
  • Uniform distribution in pmin 1? and 1 pmax ?
  • Average K matrix
  • Parameter selection procedure on

22
Steady State Detection Tool
  • Determine Potential Steady State Intervals
  • Setpoint data
  • Determine Raw Steady States
  • PV data determine candidates
  • Lab data eliminate candidates if samples too few
  • Automatic window sliding and expansion
  • Collapse Raw Steady States
  • Reduce redundant information

23
Steady-State Parameter Estimation
  • Objective function
  • Measurements Rx T, poly rate, M1, M3 contents
  • Standard deviations average values from plant
  • Durations weighting factor
  • Optimization algorithm Simulated Annealing
  • Global
  • May accept a uphill point with a certain
    probability

24
Steady-State Parameter Estimation
  • Parameter bounds
  • k11 and k22 bounds obtained from literature
  • Other propagation parameters
  • Reactivity ratios obtained from literature
  • Other parameters 0.1 10 initially, subject to
    adjustment

25
Steady-State Parameter Estimation Results
26
NONLINEAR ONLINE STATE ESTIMATION
  • Model-based controller requires
  • State estimator estimates states from model and
    measured outputs
  • Extended Kalman filter (EKF) is an optimal
    nonlinear state estimator
  • Challenges
  • Measurements different frequencies with time
    delays
  • Parametric/structural Model Mismatch cause bias
  • Design
  • Model decoupling, hierarchical EKF structure
  • Introducing parameters/disturbances as additional
    states

27
Model and Measurement Structure
  • Measurements 2 different frequencies
  • On-line, every 6 min
  • related to 0-th moments
  • Lab, every 2h w/ 1h delay
  • related to 0-th/1st moments
  • System triangle
  • Zeroth moments
  • First moments
  • Second moments

28
Model Decoupling and EKF Construction
  • First subsystem
  • where
  • An EKF can be constructed
  • Prediction from model
  • Correction by current measurements

29
Model Decoupling and EKF Construction
  • Second subsystem
  • where
  • The EKF handles the time delay
  • Prediction to the time measurements taken
  • Correction by the measurements
  • Integration forward to current time

30
Perfect Model w/ Noise (1st System)
Noises are rejected
31
Perfect Model w/ Noise (2nd System)
32
Parametric Mismatch w/ Noise (1st System)
Noises and biases are reduced
33
Parametric Mismatch w/ Noise (2nd System)
34
Structural Mismatch w/ Noise (1st System)
35
Structural Mismatch w/ Noise (2nd System)
36
CONCLUDING REMARKS
  • Dynamic Modeling
  • Crosslinkng Mechanism Model broad MWD and
    gelation
  • Numerical Fractionation/Pseudo Kinetic Constant
  • Can compute properties at gel point and in
    post-gel region
  • Stable
  • Track evolution of MWD
  • Offline Parameter Estimation
  • Parameter Selection Procedure
  • Based on steady-state perturbation test
  • Better than FIM-based procedures
  • Can be extended to account for nonlinearity and
    dynamics
  • Steady-State Detection Tool
  • Automatic sliding and expansion
  • On-line State Estimation
  • Hierarchical EKF structure
  • Stable, can reduce noises and biases

37

ACKNOWLEDGMENTS
  • Advisors Drs. Kerry M. Dooley Armando. B.
    Corripio
  • Former advisor Dr. Michael A. Henson (UMass)
  • Dr. Michael J. Kurtz Mr. Norman I. Silverman
  • Former group members
  • Drs. Guang-Yan Zhu (UTC) and Yungchun Zhang
    (UCSB)
  • Prashant Mhaskar (UCLA) and Shoujun Bian (UMass)
  • Others
  • Profs. Teymour (IIT) and Gossage (Lamar)
  • Funding
  • Department of Chemical
    Engineering
  • ex
Write a Comment
User Comments (0)
About PowerShow.com