Example: Intel, Novelus, Motorola, Dell depend on the pric - PowerPoint PPT Presentation

About This Presentation
Title:

Example: Intel, Novelus, Motorola, Dell depend on the pric

Description:

Example: Intel, Novelus, Motorola, Dell depend on the price of Microsoft ... DELL. AMAT. HPQ. Module Network Components. Module Assignment Function ... – PowerPoint PPT presentation

Number of Views:104
Avg rating:3.0/5.0
Slides: 52
Provided by: btas
Category:

less

Transcript and Presenter's Notes

Title: Example: Intel, Novelus, Motorola, Dell depend on the pric


1
Learning Module Networks
  • Eran Segal
  • Stanford University

Aviv Regev (Harvard) Nir Friedman (Hebrew U.)
Joint work with Dana Peer (Hebrew U.) Daphne
Koller (Stanford)
2
Learning Bayesian Networks
  • Density estimation
  • Model data distribution in population
  • Probabilistic inference
  • Prediction
  • Classification
  • Dependency structure
  • Interactions between variables
  • Causality
  • Scientific discovery

3
Stock Market
  • Learn dependency of stock prices as a function of
  • Global influencing factors
  • Sector influencing factors
  • Price of other major stocks

4
Stock Market
  • Learn dependency of stock prices as a function of
  • Global influencing factors
  • Sector influencing factors
  • Price of other major stocks

MSFT
DELL
INTL
NVLS
MOT
5
Stock Market
  • Learn dependency of stock prices as a function of
  • Global influencing factors
  • Sector influencing factors
  • Price of other major stocks

Bayesian Network
DELL
INTL
MSFT
NVLS
MOT
6
Stock Market
  • 4411 stocks (variables)
  • 273 trading days (instances) from Jan.02
    Mar.03
  • Problems
  • Statistical robustness
  • Interpretability

7
Key Observation
  • Many stocks depend on the same influencing
    factors in much the same way
  • Example Intel, Novelus, Motorola, Dell depend on
    the price of Microsoft
  • Many other domains with similar characteristics
  • Gene expression
  • Collaborative filtering
  • Computer network performance

8
The Module Network Idea
Bayesian Network
MSFT
MOT
INTL
DELL
AMAT
HPQ
9
Problems and Solutions
  • Statistical robustness
  • Interpretability

10
Outline
  • Module Network
  • Probabilistic model
  • Learning the model
  • Experimental results

11
Module Network Components
  • Module Assignment Function
  • A(MSFT)MI
  • A(MOT)A(DELL)A(INTL) MII
  • A(AMAT) A(HPQ)MIII

MSFT
AMAT
HPQ
INTL
MOT
DELL
MSFT
Module I
MOT
INTL
DELL
Module II
AMAT
HPQ
Module III
12
Module Network Components
  • Module Assignment Function
  • Set of parents for each module
  • Pa(MI)?
  • Pa(MII)MSFT
  • Pa(MIII)DELL, INTL

MSFT
Module I
MOT
INTL
DELL
Module II
AMAT
HPQ
Module III
13
Module Network Components
  • Module Assignment Function
  • Set of parents for each module
  • CPD template for each module

MSFT
Module I
MOT
INTL
DELL
Module II
AMAT
HPQ
Module III
14
Ground Bayesian Network
  • A module network induces a ground BN over X
  • A module network defines a coherent probabilty
    distribution over X if the ground BN is acyclic

MSFT
Module I
MOT
INTL
DELL
Module II
AMAT
HPQ
Module III
15
Module Graph
  • Nodes correspond to modules
  • Mi?Mj if at least one variable in Mi is a parent
    of Mj

MSFT
Module I
MOT
INTL
DELL
Module II
AMAT
HPQ
Acyclicity checked efficiently using the module
graph
Module III
16
Outline
  • Module Network
  • Probabilistic model
  • Learning the model
  • Experimental results

17
Learning Overview
  • Given data D, find assignment function A and
    structure S that maximize the Bayesian score
  • Marginal data likelihood

18
Likelihood Function
MSFT
Module I
MOT
INTL
DELL
Module II
AMAT
HPQ
Likelihood function decomposes by modules
Module III
Instance 1
Instance 2
Sufficient statistics of (X,Y)
Instance 3
19
Bayesian Score Decomposition
  • Bayesian score decomposes by modules

MSFT
Module I
Module j variables
Module j parents
MOT
INTL
DELL
Delete INTL ? ModuleIII
Module II
AMAT
HPQ
Module III
20
Bayesian Score Decomposition
  • Bayesian score decomposes by modules

MSFT
Module I
MOT
INTL
DELL
A(MOT)2 ? A(MOT)1
Module II
AMAT
HPQ
Module III
21
Algorithm Overview
  • Find assignment function A and structure S that
    maximize the Bayesian score

Find initial assignment A
Dependency structure S
22
Initial Assignment Function
Variables (stocks)
AMAT
MOT
MSFT
DELL
INTL
HPQ
Instances (trading days)
x1
x2
x3
x4
Find variables that are similar across instances
A(MOT) MII A(INTL) MII A(DELL) MII
23
Algorithm Overview
  • Find assignment function A and structure S that
    maximize the Bayesian score

Find initial assignment A
Dependency structure S
24
Learning Dependency Structure
  • Heuristic search with operators
  • Add/delete parent for module
  • Cannot reverse edges
  • Handle acyclicity
  • Can be checked efficientlyon the module graph
  • Efficient computation
  • After applying operator formodule Mj, only
    update scoreof operators for module Mj

MSFT ? ModuleII
X
MSFT
Module I
MOT
MI
MII
MIII
INTL
DELL
Module II
X
INTL ? ModuleI
AMAT
HPQ
?
INTL ? ModuleIII
Module III
25
Learning Dependency Structure
  • Structure search done at module level
  • Parent selection
  • Reduced search space relative to BN
  • Acyclicity checking
  • Individual variables only used for computation of
    sufficient statistics

26
Algorithm Overview
  • Find assignment function A and structure S that
    maximize the Bayesian score

Find initial assignment A
Dependency structure S
27
Learning Assignment Function
  • A(DELL)MI
  • Score 0.7

DELL
DELL
MSFT
Module I
MOT
INTL
Module II
AMAT
HPQ
Module III
28
Learning Assignment Function
  • A(DELL)MI
  • Score 0.7
  • A(DELL)MII
  • Score 0.9

DELL
MSFT
Module I
MOT
INTL
DELL
Module II
AMAT
HPQ
Module III
29
Learning Assignment Function
  • A(DELL)MI
  • Score 0.7
  • A(DELL)MII
  • Score 0.9
  • A(DELL)MIII
  • Score cyclic!

MSFT
Module I
MOT
INTL
DELL
Module II
DELL
AMAT
HPQ
Module III
30
Learning Assignment Function
  • A(DELL)MI
  • Score 0.7
  • A(DELL)MII
  • Score 0.9
  • A(DELL)MIII
  • Score cyclic!

MSFT
Module I
MOT
INTL
DELL
Module II
AMAT
HPQ
Module III
31
Ideal Algorithm
  • Learn the module assignment of all variables
    simultaneously

32
Problem
  • Due to acyclicity cannot optimize assignment for
    variables separately

A(DELL)ModuleIV
A(MSFT)ModuleIII
DELL
MSFT
DELL
DELL
MSFT
DELL
Module I
Module II
MI
MII
DELL
AMAT
HPQ
MIII
MIV
Module III
Module IV
Module graph
Module Network
33
Problem
  • Due to acyclicity cannot optimize assignment for
    variables separately

A(DELL)ModuleIV
A(MSFT)ModuleIII
DELL
MSFT
DELL
DELL
MSFT
DELL
Module I
Module II
MI
MII
DELL
AMAT
HPQ
MIII
MIV
Module III
Module IV
Module graph
Module Network
34
Learning Assignment Function
  • Sequential update algorithm
  • Iterate over all variables
  • For each variable, find its optimal assignment
    given the current assignment to all other
    variables
  • Efficient computation
  • When changing assignment from Mi to Mj, only need
    to recompute score for modules i and j

35
Learning the Model
MSFT
AMAT
HPQ
  • Initialize module assignment A
  • Optimize structure S
  • Optimize module assignment A
  • For each variable, find its optimalassignment
    given the currentassignment to all other
    variables

INTL
MOT
DELL
MSFT
Module I
MOT
INTL
DELL
Module II
AMAT
HPQ
MOT
Module III
36
Related Work
Bayesian networks
Parameter sharing
PRMs
OOBNs
Module Networks
37
Outline
  • Module Network
  • Probabilistic model
  • Learning the model
  • Experimental results
  • Statistical validation
  • Case study Gene regulation

38
Learning Algorithm Performance
-128
-129
Bayesian score (avg. per gene)
-130
Algorithm iterations
-131
0
5
10
15
20
39
Generalization to Test Data
  • Synthetic data 10 modules, 500 variables

40
Generalization to Test Data
  • Synthetic data 10 modules, 500 variables

500 instances
200 instances
Test data likelihood (per instance)
100 instances
  • Gain beyond 100 instances is small

25 instances
50 instances
Number of modules
41
Structure Recovery Graph
  • Synthetic data 10 modules, 500 variables

500 instances
200 instances
Recovered structure ( correct)
100 instances
50 instances
25 instances
Number of modules
42
Stock Market
  • 4411 variables (stocks), 273 instances (trading
    days)
  • Comparison to Bayesian networks (cross validation)

43
Regulatory Networks
  • Learn structure of regulatory networks
  • Which genes are regulated by each regulator

44
Gene Expression Data
Experiments
  • Measures mRNA level forall genes in one
    condition
  • Learn dependency of the expression of genes as a
    function of expression of regulators

Induced
Genes
Repressed
45
Gene Expression
  • 2355 variables (genes), 173 instances (arrays)
  • Comparison to Bayesian networks

46
Biological Evaluation
  • Find sets of co-regulated genes (regulatory
    module)
  • Find the regulators of each module

46/50
30/50
Segal et al., Nature Genetics, 2003
47
Experimental Design
  • Hypothesis Regulator X activates process Y
  • Experiment Knock out X and repeat experiment

X
Segal et al., Nature Genetics, 2003
48
Differentially Expressed Genes
Segal et al., Nature Genetics, 2003
49
Biological Experiments Validation
  • Were the differentially expressed genes predicted
    as targets?
  • Rank modules by enrichment for diff. expressed
    genes

Segal et al., Nature Genetics, 2003
50
Summary
  • Probabilistic model for learning modules of
    variables and their structural dependencies
  • Improved performance over Bayesian networks
  • Statistical robustness
  • Interpretability
  • Application to gene regulation
  • Reconstruction of many known regulatory modules
  • Prediction of targets for unknown regulators

51
Thank You!
Write a Comment
User Comments (0)
About PowerShow.com