Will exobiology out of the Solar System stop after the DARWIN mission - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

Will exobiology out of the Solar System stop after the DARWIN mission

Description:

classical imaging coronagraph - other concept ? VIRA - 20/21 ... High performance coronagraph. Global efficiency x 10 at least. No need for hyper telescope ... – PowerPoint PPT presentation

Number of Views:95
Avg rating:3.0/5.0
Slides: 24
Provided by: MarcoL150
Category:

less

Transcript and Presenter's Notes

Title: Will exobiology out of the Solar System stop after the DARWIN mission


1
Will exobiology out of the Solar System stop
after the DARWIN mission ?
  • Marc Ollivier(1), Alain Léger (1), Pascal Bordé
    (2) and Bruno Chazelas (1)
  • (1) Institut dAstrophysique Spatiale dOrsay
  • (2) IPAC - Caltech

2
DARWINs quest first order spectroscopy
  • Pleurant, je voyais de l'or, - et ne pus boire.
  • (A. Rimbaud)

3
1What is the composition of the planetary
atmosphere ?Is it primitive or did it evolve
?What about bio-markers ?
4
Infrared spectral range
Selsis, ESA SP 518, 2002
5
Multi criteria spectral analysis
  • Requires low res. spectra (r20-50), moderate S/N
  • Theory / observation e.g. CO2, H2O , O3
    (Selsis)
  • Simultaneous presence of oxidizing / reducing
    gases (ex CH4 and O2, NH3 and O2,) (Sagan)

6
High resolution spectroscopy
  • Specific spectral features
  • at (r200-500)
  • e.g technological gases
  • Observation still at the planet
  • scale
  • S/N depending on the features
  • Pb of contaminations by other
  • species

7
High resolution spectroscopy how to ?
  • Required spectral resolution 200 - 500
    DARWIN x 20
  • Required S/N 100 DARWIN x 10
  • Signal 10 ph / s / m2 in 6-20?m
  • Assuming the same performance for the instrument
    (transmission, rejection, stability)
  • Assuming integration times x 5
  • Collecting area x 400 i.e diameter x 20
  • -gt ELT in space
  • -gt Improvement in the instrument performance
  • -gt classical imaging coronagraph
  • -gt other concept ?

8
High resolution spectroscopy how to ?
  • Angular résolution 0.1 arcsec at 10 ?m -gt
    20-40 m class telescope
  • Collecting area compatible
  • High performance coronagraph
  • Global efficiency x 10 at least
  • No need for hyper telescope
  • -gt  BIG  NGST

9
2What about the surface ?Are there evident
traces of life activity on the planetary surface
?Can we image them ?
10
Direct imaging hypotheses
  • Image of an earthlike planet
  • Planet distance 10 pc earth diameter 8.5
    10-6 arcsec
  • S/N 10 per pixel
  • Integration time reasonable (?!)
  • Collecting area 20000 m2 (equ. 10 x 50m
    telescope)
  • Planet photon limited observations (100 pl.
    photons req)
  • No planet rotation during exposure (or elementary
    exposure)
  • Pb day / night for the planet (phases)
  • Visible spectral range 0.5 -gt 1 ?m, mean
    wavelength 0.75 ?m total flux in the spectral
    band 0.1 ph / s / m2
  • Efficiency of the detection chain (detector
    incl.) 20

11
Direct imaging
16 x 16 -gt 200 px Res 4. 10-7 arcsec -gt 450
km Int. Time 1 min - 3min
12
Direct imaging (2)
32 x 32 -gt 800 px Res 2. 10-7 arcsec -gt 900
km Int. Time 3.5 min - 10 min
13
Direct imaging (3)
64 x 64 -gt 3200 px Res 10-7 arcsec -gt 1800
km Int. Time 15 min - 45 min
14
Direct imaging (4)
128 x 128 -gt 12800 px Res 5.10-8 arcsec -gt 3600
km Int. Time 1h - 3h
15
Direct imaging (5)
256 x 256 -gt51200 px Res 2.5 10-8 arcsec -gt
7200 km Int. Time 3.5 h - 10h
16
Direct imaging (6)
512 x 512 -gt204800 px Res 1.2 10-8 arcsec -gt
15000 km Int. Time 14 h - 40h
17
Direct imaging (7)
1024 x 1024 -gt825000 px Res 0.6 10-8 arcsec -gt
30000 km Int. Time 2.3 days - 7 days
18
Direct imaging conclusion
  • Observation of the surface
  • OK at medium spatial resolution (200km/px)
  • Observation of 10 km details
  • about 1 week int time required (incl color
    information)
  • OK for fixed objects towns, forests, seas,
  • no hope to sea animals groups (except if they do
    not move)
  • (Still) more difficult if the planet rotates or
    if dark side
  • is observed (except if strong artificial light)
  • -gt need to increase drastically the collecting
    area
  • weightless mirrors, increase of the launch
  • capabilities, complex formation flying required
  • -gt reduction of the observation distance
  • Observation probe

19
Weightless mirrors
  • Polymer mirrors
  • Gaseous mirrors (Laser Trapped mirrors)

20
3Nearer better ?
21
A 10 pc trip ?
  • Direct observation with a probe -gt nearby
    observation
  • 10 pc trip
  • Assuming c/10 (nuclear propulsion) about 300
    years to reach the target
  • Single shot mission
  • No  direct  data transmission -gt need to bring
    back the observation 300 years later.
  • Self flying mission
  • Strong risk of obsolescence

22
4Do we contact them ?The role of SETI
23
Conclusion
  • DARWIN like missions are first but certainly
    most important steps providing strong clues for
    planetary composition and habitability
  • Potential following missions should be HIGH
    RESOLUTION SPECTROSCOPY
  • Direct imaging of the surface is difficult and
    maybe not relevant at low spatial resolution
  • In situ exploration is a millennium project
Write a Comment
User Comments (0)
About PowerShow.com