Cooperative Artefacts: Assessing Real World Situations with Embedded Technology - PowerPoint PPT Presentation

1 / 21
About This Presentation
Title:

Cooperative Artefacts: Assessing Real World Situations with Embedded Technology

Description:

Cooperative Artefacts, Martin Strohbach et al., Lancaster University. 3 /21 ... Martin Strohbach et al., Lancaster University. 8 /21. Chemical Container ... – PowerPoint PPT presentation

Number of Views:22
Avg rating:3.0/5.0
Slides: 22
Provided by: martinst3
Category:

less

Transcript and Presenter's Notes

Title: Cooperative Artefacts: Assessing Real World Situations with Embedded Technology


1
Cooperative ArtefactsAssessing Real World
Situations with Embedded Technology
  • Martin Strohbach, Hans Gellersen, Gerd Kortuem,
    Christian Kray
  • Lancaster University

2
Handling and Storage of Chemicals
!
3
Incompatible Chemicals Hazard
  • Incompatible materials like Calcium Hypochlorite
    and Methyl carbitol may not be stored together

4
Support Staff Dealing with Chemicals
  • Current Situation
  • Training Seminars and Safety Manuals
  • Unreliable
  • In situ assistance
  • Alert potential hazards where and when they arise

HAZARD !
5
Cooperative Artefacts
6
Cooperative Reasoning
  • Each container
  • Autonomous Observations
  • Individual assessment of situations

Ask KB
Reply
Query
Query
Hazard ?
Query
Yes/No.
Ask KB
Reply
Reply
7
Methodology
  • Take concrete scenario from industry
  • 3 different hazards
  • Incompatible Materials
  • Critical Mass
  • Unapproved Area
  • Build prototypes
  • Testbed

8
Chemical Container
  • Domain Knowledge
  • reactive(ltchemicalgt,ltchemicalgt)
  • critical_mass(ltchemicalgt,ltnumbergt)
  • critical_time(ltchemicalgt,lttimegt)
  • content(me,ltchemicalgt)
  • mass(me,ltnumbergt)
  • Observational Knowledge
  • proximity(ltcontainergt,ltcontainergt)
  • no_proximity
  • location(ltcontainergt,ltin/outgt,lttimegt)

9
Scenario
10
Critical Mass Hazard
hazard_critical_mass- content(me, CH),
cond_sum(M1, (proximity(me,C),
content(C,CH), mass(C,M1)),S), mass(me, M2),
sum(S, M2, SUM) critical_mass(CH, MASS), MASS lt
SUM.
CaclciumHypochlorite
content ?
Mass?
5kg
11
Incompatible Materials Hazard
hazard_incompatible- content(me,
CH1), proximity(me, C), content(C,
CH2), reactive(CH1, CH2).
12
Unapproved Area Warning
warning- location(me, out, T1),
content(me,CH), critical_time(CH,T2), T1ltT2.
13
Unapproved Area Hazard
After one hour
hazard_unapproved- content(me, CH),
critical_time(CH, T1), location(me, out, T2),
T1 lt T2.
14
Hardware Implementation
  • 2 PCBs logically linked
  • US Distance Measurements
  • KB, Inference Engine and LEDs
  • Based on Particle Smart-its
  • PIC18F6720 _at_ 20 MHz (5 MIPS)
  • Program Memory 128KB
  • Data Memory 3.8KB RAM, 1KB internal EEPROM
  • External Memory 32 KB EEPROM

15
Inference Engine
  • Based on First Order Horn logic
  • Backward chaining algorithm with depth first
    search
  • Restrictions
  • Backtracking only over local predicates
  • Restrictions in number of arguments
  • Memory Footprint 37KB ROM (29), 1.9KB RAM
    (51) worst case

16
Rule evaluation
  • Observations change KB
  • Changes trigger re-evaluation of actuator rules
  • Side effect during evaluation of actuator rules
    changes states of actuators

17
Indicating Hazards
  • Hazard
  • Warning
  • No Hazard

18
Results
  • Detection of complex situations in the physical
    world is possible
  • Feasible to embed knowledge, perception and
    reasoning in artefacts
  • Sufficient Response Time
  • 1-2 seconds

19
Properties of Cooperative Artefacts
  • No external infrastructure
  • Rules of the application domain can be directly
    mapped to rules in artefacts

20
Future Work
  • How to provide feedback ?
  • How reasoning be limited to relevant knowledge ?
  • How can hazards be detected that involve hundreds
    of containers ?

21
Thank you
  • Questions ?
Write a Comment
User Comments (0)
About PowerShow.com