Improving Compression Ratio, Area Overhead, and Test Application Time in System-on-a-chip Test Data Compression/Decompression - PowerPoint PPT Presentation

1 / 15
About This Presentation
Title:

Improving Compression Ratio, Area Overhead, and Test Application Time in System-on-a-chip Test Data Compression/Decompression

Description:

Compression. reduces bandwidth. further reduces test time. 3. Paul Theo Gonciari ... reduced bandwidth. Initial test set. 6. Paul Theo Gonciari. University of ... – PowerPoint PPT presentation

Number of Views:192
Avg rating:3.0/5.0
Slides: 16
Provided by: udo7
Category:

less

Transcript and Presenter's Notes

Title: Improving Compression Ratio, Area Overhead, and Test Application Time in System-on-a-chip Test Data Compression/Decompression


1
Improving Compression Ratio, Area Overhead, and
Test Application Time in System-on-a-chip
Test Data Compression/Decompression
  • Paul Theo Gonciari, Bashir Al-Hashimi and
    Nicola Nicolici
  • University of Southampton, UK
  • McMaster University, Canada

2
Why Test Data Reduction ?
  • Exponential increase in volume of test data
    (ITRS)
  • 60 of ATE upgrade caused by memory (EETimes)
  • Solutions
  • Built-in self-test (BIST)
  • Test data reduction
  • Useful
  • Useless
  • Useful
  • Compaction
  • does not reduce bandwidth
  • Compression
  • reduces bandwidth
  • further reduces test time

3
Overview
  • Test data compression (TDC)
  • Environment
  • Previous work
  • Variable-length Input Huffman Coding (VIHC)
  • Compression algorithm
  • Decompression architecture
  • Experimental results
  • Conclusions Future work

4
Test Data Compression (TDC)
  • Post ATPG process
  • Reduces size of test set
  • Exploits nature of test sets
  • Mapping
  • Reordering
  • Difference sequence
  • Exploits nature of patterns
  • Length
  • Type
  • Requires on-chip decoder

ATPG
Initial test set
Test data compression
Compressed test set
Test vector database
5
TDC Environment (TDCE)
  • Compression ratio
  • Mapping reordering
  • Type of input patterns
  • Length of the pattern
  • Compression algorithm
  • Area overhead
  • Nature of decoder
  • Type of input pattern
  • Length of pattern
  • Test application time (TAT)
  • Nature of decoder
  • Length of pattern
  • Frequency ratio

ATE
reduced bandwidth
on-chip decoder
Initial test set
CUT
6
TDC Previous Work
  • Selective Coding (SC) Jas et. al VTS99
  • large decoder
  • parallel decoder
  • low TAT
  • Golomb codes Chandra et. al TCAD01
  • small decoder
  • serial decoder
  • large TAT
  • FDR codes Chandra et. al VTS01
  • fixed size decoder
  • serial decoder
  • large TAT

7
Variable-length Input Huffman Coding
  • Variable-length Input Huffman Coding (VIHC)
  • Employs variable-length input patterns
  • Uses Huffman coding to obtain optimum code
  • Uses parallel on-chip decoder to reduce TAT
  • Compression Algorithm
  • Step 1 - Prepare initial test set
  • mapping dont cares
  • reordering
  • number of 1s in the difference is minimum
  • minimum run of 0s maximum
  • Step 2 - Huffman code computation
  • exploits variable length patterns
  • Step 3 - Generate decoder information
  • determines the on-chip decoder

8
VIHC - Code Computation
9
VIHC vs. Golomb TCAD01
10
VIHC Decoder
  • VIHC parallel on-chip decoder
  • Huffman decoder
  • Control and Generation Unit (CGU)

11
Compression Ratio Comparison
12
Area Overhead Comparison
13
Test Application Time Comparison
14
Comparison Overview
15
Conclusion Future Work
  • Proposed
  • New VIHC method
  • New compression/decompression scheme
  • Improves all the TDCE parameters
  • Good compression ratio
  • Small area overhead
  • Low test application time
  • Future work
  • Reduce synchronization overhead
  • Exploit core wrapper design for TDC
Write a Comment
User Comments (0)
About PowerShow.com