Microwave spectroscopy of biomimetics molecules - PowerPoint PPT Presentation

About This Presentation
Title:

Microwave spectroscopy of biomimetics molecules

Description:

Laboratoire Interuniversitaire des Syst mes Atmosph riques (LISA), Cr teil, France ... Frank Lovas. Gerald Fraser. Angela Hight Walker. Institute of Radio ... – PowerPoint PPT presentation

Number of Views:160
Avg rating:3.0/5.0
Slides: 41
Provided by: theres77
Category:

less

Transcript and Presenter's Notes

Title: Microwave spectroscopy of biomimetics molecules


1
Microwave spectroscopy of biomimetics molecules
  • Isabelle KLEINER
  • Laboratoire Interuniversitaire des Systèmes
    Atmosphériques (LISA), Créteil, France

Nice, 15-16 Sept 2009
2
What do we call  Biomimetic Molecules  ?
  • Small molecules forming the elementary blocks of
    biomolecules amino acids, small peptides,
    nucleic acids, sugars
  • Can serve as validation tools
  • relatively small molecules are the favourite
    candidates for most oral drugs (so-called
     Lipinsky rule )
  • -molecular weight of 500 or less,
  • -not more than 5 hydrogen-bond donor sites,
  • -not more than 10 hydrogen-bond acceptor sites
  • Jorgensen, Drug Discovery, Science, 303, 1813
    (2004)

3
Today, what systems will we talk about?
  • Proteins are formed by a reservoir of 20 amino
    acids. Amino acids are related by peptidic
    bondings to form polypeptides

Backbone chain
Side chain
Residue 1
Residue 2
Residue3
Peptide link rigid, planar
Formation of peptide link by condensation and
elimination of water
Only certain values of the Ramachadran angles f
and Y are possible
4
Hydrogen Bond
structure Primaire Secondaire
Tertiaire Quaternaire
g turns
b feuillets
a helice
5
Primary structure
Secondary Tertiary
Quaternary
5 to 30 amino-acid residues Experimental
measurement of electric dipole moment or
diffusion velocity in a gas ( ion
mobility ) Such measurements can be coupled
with hybrid calculation methods Advantages
peptidic  maps  dipoles/mass to identify
proteins Challenge need a structure
calculation
Systems between 1 to 5 amino acids residues (up
to a few hundred Daltons) Optical spectroscopic
techniques (microwave, millimeter wave,
terahertz, infrared, UV/visible). Determination
of effective neutral molecular
structures Comparison with quantum mechanical
calculations at equilibrium. Advantages
functional-group and conformational specificity.
Challenge getting good signal-to-noise
Above about 30 amino acids Mass spectrometry
Determination of complexation of the
biomolecule by ligands. Advantages Many
proteins acquire their secondary or tertiary
structures when they bond. Challenge Mass
spectrometry does not give structures
directly. For macromolecular systems, modelling
using a classical force field (AMBER and CHARMM
softwares).
Coupling mass spectrometry with spectroscopy
(Oomens, Meyer et al, 2005, Kapota , Maïtre,
Ohanessian et al JACS, 2004).IR/UV or
UV/UVhole-burning spectroscopy (Mons et al, Zwier
et al, Gerhards et al, Simons et al)
6
Hydrogen Bond Torsion
  • Secondary and tertiary structure of proteins
  • How is Microwave spectroscopy at high
    resolution going to contribute ???
  • Internal rotation splittings can be used to
    obtain the structure/folding of molecules in gas
    phase WITHOUT doing isotopic substitution.

Lavrich et al. JCP 2003
7
What is internal rotation?
8
Microwave is a good spectral range to determine
very accurately molecular structures but the
size of the molecule is limited
Limit size of the molecule Detected by most of
Fourier- Transform spectrometers (4-20 GHz)
250-300 uma
Rigid rotor (zero order) Asymmetric top,
rotation structure characterized by the quantum
numbers J, Ka, Kc
9
Peptidic bonding and torsion a few examples of
molecules studied in MW
  • Formamide
  • Astrophysical detection Rubin et al, ApJ 1971,
  • Brown et al JMS 1987
  • Acetamide
  • Potential Barrier V3 25 cm-1 Ilyushin et
    al, JMS 2003, 1 top low barrier, Cs frame
  • Astrophysical detection  The Largest
    Interstellar Molecule with a Peptide Bond ,
    Hollis et al, ApJ 643 2006, L25
  • N-methylformamide
  • Potential Barrier V3 cis 60 cm-1, V3 trans
    279 cm-1, Kawashima, et al (Columbus 2002),
  • Fantoni, Caminati, J. Mol. Struct., 2002

10
Examples Acetamide derivatives
  • N-Methylacetamide
  • V3(1)36 cm-1, V3(2)42 cm-1
  • Ohashi, Hougen et al JMS 2004
  • 2 tops problem, Cs frame
  • N-Methylpropionamide
  • V3(1)796 cm-1, V3(2)81 cm-1
  • Kawashima, Hirota et al JMS 2003
  • N-Ethylacetamide
  • V3 75 cm-1 Kawashima (Dijon 2003)

11
This talk dipeptidic derivatives
Collaboration NIST (Gaithersburg, USA), PhLAM
(Lille)
  • Ethyl AcetamidoAcetate (EAA) or N acetylglycine
    ethyl ester
  • N-acetyl-alanine N-methylamide (AAMA)
  • V3(1)98 cm-1, V3(2)81 cm-1
  • Lavrich et al. JCP 2003
  • Alanine Dipeptide
  • Methyl Ester (ADME)

Observé
12
Methylcarbamate
Collaboration with Institute for Radioastronomy
of NASU (Ukraine), PhLAM (Lille), University of
Eotvos (Budapest)
METHYLCARBAMATE isomer of glycine, Plausible
candidate for an astrophysical detection because
more stable than glycine
Glycine
Rotation-torsion MW spectrum Ilyushin et al.,
J. Mol. Spectrosc., 240, 127 (2006).
NH2COOCH3
Good candidate for validation of high level
quantum chemical Calculations Equilibrium vs.
Ground-State Planarity of the CONH Linkage ?
Demaison et al., J. Phys. Chem. A., 111,
2574-2586 (2007).
13
HOW TO MODEL INTERNAL ROTATION? For one C3v top,
and a frame with a plane of symetry Cs
HRAM Htor Hrot Hd.c Hint 1)
Diagonalization of the torsional part of the
Hamiltonian in an axis system where
torsion-rotation coupling is minimal (Rho Axis
Method, RAM), Kirtman et al, Lees and Baker ,
Herbst et al Htor F (pa - r.Jz)2 V(a) F
internal rotation constant r depends on
Itop/Imolecule Eigenvalues torsional
energies 2) Eigenvectors are used to set up the
matrix of the rest of the Hamiltonian Hrot
ARAMJa2 BRAMJb2 CRAMJc2 Dab(JaJb
JbJa) Hd.c usual centrifugal distorsion
terms Hint higher order torsional-rotational
interactions terms cos3a et pa and global
rotational operators like Ja, Jb , Jc
14
Theoretical Model the global approach
RAM Rho Axis Method (axis system) for a Cs
(plane) frame
HRAM Hrot Htor Hint Hd.c.
Torsional operators and potential function V(a)
Constants 1 1-cos3a p2a Japa 1-cos6a p4a Jap3a
1 V3/2 F r V6/2 k4 k3
J2 (BC)/2 Fv Gv Lv Nv Mv k3J
Ja2 A-(BC)/2 k5 k2 k1 K2 K1 k3K
Jb2 - Jc2 (B-C)/2 c2 c1 c4 c11 c3 c12
JaJbJbJa Dab or Eab dab Dab dab dab6 DDab ddab
Rotational Operators
  • angle of torsion, r couples internal
    rotation and global rotation, ratio of the moment
    of inertia of the top and the moment of inertia
    of the whole molecule

Kirtman et al 1962 Lees and Baker, 1968 Herbst
et al 1986
Hougen, Kleiner, Godefroid JMS 1994
15
Internal Rotation Programs
http//info.ifpan.edu.pl/kisiel/prospe.htm
programs for rotational spectroscopy (Z. Kiesel)
Name authors what it does? Method
_________________________________________________
______________________ XIAM Hartwig up to 3
sym tops combined RAM-PAM Maeder up to one
quad. (based on Woods method) nucleus
Separate vt fit, sometimes separate A and
E fits _________________________________________
______________________________ ERHAM Groner one
and two Effective, combined
RAM-PAM internal rotors Separate vt states
fit of sym.C3v or C2v J up to
120. acetone,diMEether 8191 lines max
MeCarbamate intensities _______________________
_________________________________________________
BELGI Kleiner one C3v internal RAM
method Godefroid, rotor. Frame can Global fit
of vt states Hougen Cs or C1 A and E
species fit together Xu, Ortigoso, J up to
70 Ilyushin, vt up to 11 acetaldehyde, acetic
acid Carvajal intensities
acetamide,MeFormate 1 or 2 different
MeCarbamate, EAA vibrational states dipeptide
alanine ester
16
Internal Rotation Programs (suite)
Name authors what it does?
Method _________________________________
_____________________________________ JB95 Plusque
llic one internal rotor PAM Separate
vt states, separate A and E fits
alanine dipeptide graphical
interface and many other molecules http//physics
.nist.gov/Divisions/Div844/facilities/uvs/jb95user
guide.htm _______________________________________
_______________________________ SPFIT/ Pickett on
e or two internal Combined RAM-PAM SPCAT rotors,
sym or asym. Separate vt states, separate A
and E fits propane, pyruvic
acid acetaldehyde (more recent) ____________
__________________________________________________
________
17
Results Ethyl AcetamidoAcetate
  • R. J. Lavrich, A. R. Hight Walker, D. F.
    Plusquellic, I. Kleiner, R. D. Suenram, J. T.
    Hougen, and G. T. Fraser, JCP 119 (2003) 5497
  • Experimental problems

Biomolecules Properties Liquid or solid Low vapor
pressure Thermal instability Multi-conformations
Internal rotation splittings Nitrogen quadrupole
Spectrometer MWFT NIST (9-18 GHz) Injection with
reservoir nozzle Heated reservoir nozzle
(135-155C) Injection with inert material Jet at
1K to simplify the spectra Large spectral range
investigated Synthesis of 15N isotopomers
18
Microwave spectra of EAA

Two conformers identificated CI and CII
T 150C
CII  non planar 
?
Structures MP2/6-311G(d,p)
CI  planar 
19
EAA (15N) a good case for comparing the JB95
and BELGI codes
  • J up to 20, K up to 6
  • JB95 BELGI
  • High barrier, perturbative approach
     Global approach 
  • CI 160 A lines, rms 1.7 kHz 160A197E lines,
    rms 1.8 kHz
  • 197 E lines, rms 1.8 kHz
  • CII 165 A lines, rms 1.4 kHz 165A203E lines,
    rms 1.7 kHz
  • 203 E lines, rms 1.3 kHz

For the CII conformer (non-planar), a C1 global
code was written (JCP 119, 5505 (2003)
20
EAA CH3 group orientations in PAS
V3(1) determined V3(2) too high, not determined
BELGI JB95 BELGI
JB95
A,B,C (EAA)
21
Comparisons with ab initio calculations
  • do not predict the correct experimentally
    observed energy ordering for the two conformers !
    ? problem of data basis/method ? MP2/6-311G(d,p)

Ab initio qcalc qcalc-qobs planar
non planar
22
Alanine Dipeptide Methyl Ester
  • I. Kleiner, J. Demaison, D. F. Plusquellic, R. D.
    Suenram, R. J. Lavrich, F. J. Lovas, G. T.
    Fraser, V. V. Ilyushin, JCP (2006)
  • Theoretical problems
  • Develop new models for molecules which has no
    plane of symmetry for the frame(1) AND have more
    than one methyl internal rotation groups
  • Deal with the hyperfine structure
  • Deduce structural informations and compare them
    with the ab initio calculations results
  1. I. Kleiner and J.T. Hougen, J. Chem. Phys. 119
    (2003) 5505, voir EAA.

23
ADME 2methyl tops
Fits for each internal rotor about 120 lines
RMS 2 kHz
  • N-methylacetamide N. Ohashi, J. T. Hougen, R. D.
    Suenram, F. J. Lovas, Y. Kawashima, M. Fujitake,
    and J. Pyka, JMS
  • 3 sets of torsional splittings
  • (AA,EA). V3 68 cm-1
  • D1 2 cm-1
  • (AA,AE). V3 400 cm-1
  • D2 0.01 cm-1
  • (AA,EE). Interaction between the 2 tops very
    small splittings. NOT TREATED

24
ADME MW spectrum
25
Experimentally deduced molecular parameters for
ADME
  • Good agreement between the global and
    perturbation approaches
  • Torsional parameters better determined when V3 is
    smaller


Rot.
Tors
26
Conformational searches, Structure and hydrogen
bond
  • 13 stable conformers of ADME located, full
    geometry optimisations with B3LYP/6-31G(d) et
    G3MP2B3
  • Comparison of ab initio structure for AAMA
    (alanine dipeptide) et ADME (N-acetyl alanine
    methyl ester)

AAMA
ADME
f
?
C5
C7
Ramachandran angles ? ?171 f
?-159 Similar to a b-sheet structure
Ramachandran angles ? ?75 f
?-82 Similar to a g-turn structure
27
Ab initio calculations structural comparisons
of ADME
f
?
  • MP2 et B3LYP base cc-p-VTZ, Gaussian03 PW91 et
    HCTH double numerical basis, DMol

DFT (B3LYP) gives rotational constants too small
and MP2 too big. DFT overestimates the
structure, MP2 underestimate it !
28
Methylcarbamate
29
Equilibrium structure of Methyl carbamate is
not planar!
  • Method B3LYP B3LYP MP2_FC CCSD(T)_AE
  • Basis VTZ AVTZ 6-311 VTZ AVTZ
    VQZ V(D,T)Z
  • --------------------------------------------------
    -------------------------------------------------
  • H9N1C2O3 13.12 10.18 12.59 17.59 16.02 15.88 16.52

30
Ground state is planar no out-of-plane terms
needed to fit the spectrum, no c type
transitions, mc 0
Ilyushin, Alekseev, Demaison, Kleiner JMS 2006
J up to 20, Ka up to 10
31
Methyl Carbamate
Syn configuration
Equilibrium vs. Ground-State Planarity of the
CONH Linkage ? Jean Demaison, Attila G. Császár,
Isabelle Kleiner, and Harald Møllendald
Formamide (X  Y  H), carbamic acid (X  OH,
Y  H), urea (X  NH2, Y  H), acetamide
(X  CH3, Y  H), and methyl carbamate (MC,
X  OCH3, Y  H) all except formamide have a
pyramidalized N at equilibrium with a very small
inversion barrier ! The effective structure
(ground state) (determined by experimental
microwave work) is however planar
32
ALL ab initio optimizations indicate that the
amide group is non planar (difference between
planar and non planar is 53 cm-1
CCSD(T)/V(T,D)Z in apparent contradiction with
experimental results (mc is zero) WHATs GOING
ON? MC behaves like other molecules containing
the amino group small barrier between planar
and non planar and the ground torsional state is
above this barrier.
33
Kydd and Rauk, J. Mol. Struct. 1981
34
Conclusions EAA and ADME
  • The internal rotation splittings in vt 0 from
    different peptide mimetics containing one or more
    CH3 groups have been analyzed with two different
    theoretical methods perturbative and global
    .
  • Spectroscopic results were compared to quantum
    chemical calculations.
  • Very good agreement for the internal rotor with a
    low potential barrier (larger splittings)
  • Care for conclusions concerning the CH3 with a
    high barrier as no excited torsional states
    measured (small spittings, thus spectroscopic
    parameters less well determined). Higher order
    terms not taken into account
  • Ab initio calculations relatively more precise
    for higher barriers the choice of methods/bases
    must be pertinent.

35
Conclusions validation of ab initio calculations
  • Torsional barriers at the MP2/cc-pVTZ level are
    in good agreement with experimental values. DFT
    barriers are 8 to 80 off!
  • DFT overestimates the structure, MP2
    underestimates (same discrepancy found with
    crystalline peptides trialanine, THz absorption
    spectrum agrees with X-ray but not with DFT
    calculations, Siegrist et al, JACS, 128, 5764,
    2006)
  • Ab initio calculations at high level are very
    useful for
  • Spectroscopists, since they can calculate
    precisely internal rotation parameters
  • High resolution spectroscopy can be used to guide
    the choice/optimization of ab initio
    calculations!

36
Conclusions methyl carbamate
  • formamide should not be considered as a general
    model of the amide linkage !
  • several molecules containing the CONH linkage
    seem to have a pyramidalized nitrogen at
    equilibrium and a double-minimum inversion
    potential with a very small inversion barrier
    allowing for an effectively planar ground-state
    structure
  • Acetamide or methyl carbamate good model for
    this

37
UNDER COURSE Trans and gauche conformer of
ethyl acetate.
Collaboration with Institute of Physical
Chemistry, RWTH Aachen (Germany) W. Stahl, L.
Nguyen, D. Jelisavac, L. Sutikdja, D. Cortés
Gómez , H. Mouhib
gauche conformer
trans conformer
Very few esters (even simple) have been studied
so far by MW spectroscopy - many atoms for
isotopic substitution - Large internal rotation
splittings - Different conformers
Jelisavac et al. JMS 2009
38
Under course Microwave Study of Phenyl Alanine
Methyl Ester Reducing the Complexity of
Confomational SearchesDouglass, Roe,
Plusquellic, Pratt and Pate
Previous works IR-R2PI spectroscopy and DFT ab
initio (Gerharts et al) Now - mini-FTMW
(NIST) 12-18 GHz - Semi-Confocal Chirped-Pulse
FTMW 12.6-18 GHz, makes possible the recording
of the complete microwave spectrum of a gas
phase sample using a single 1 µs
pulse. -assignment of overlapping sub-bands
genetic algorithms (L. Meerts)
Lowest energy conformers MP2/6-311G
39
Perspectives towards larger biomimetic
molecules?
  • Experimental challenge
  • -nondestructively vaporizing fragile biomimetics
    laser ablation
  • Theoretical challenge
  • -extend present modeling using effective
    Hamiltonians and codes to describe more
    complicated system (containing two or more
    internal rotors CH3).
  • Methyl acetate CH3COOCH3 collaboration with Jon
    Hougen
  • Sonia Melandri (Bologna), Lilian Sutikdja
  • .
  • -transfer the information obtained by gas phase
    MW high resolution spectroscopy to biomolecules
    in a cell environnement!

40
National Institute For Standards And Technology
(NIST, USA) Jon Hougen David Plusquellic Richard
Lavrich Richard Suenram Frank Lovas Gerald
Fraser Angela Hight Walker
  • Laboratory of Molecular Spectroscopy
  • (Budapest, Hungary)
  • Attila G. Császár

Laboratoire de Physique des Lasers, Atomes, et
Molécules (Lille, France) Jean Demaison, L.
Margulès, Th. Huet, R. Motyenko, M. Tudorie
Institute of Radio Astronomy of NASU (Kharkov,
Ukraine) Vadim Ilyushin Eugene Alekseev
Physical Chemistry, RWTH Aachen (Germany) W.
Stahl L. Nguyen D. Jelisavac L. Sutikdja D.
Cortés Gómez , H. Mouhib
Write a Comment
User Comments (0)
About PowerShow.com