Generative models of brain activity as measured in functional MRI and MEGEEG - PowerPoint PPT Presentation

1 / 58
About This Presentation
Title:

Generative models of brain activity as measured in functional MRI and MEGEEG

Description:

Models of interactions (connectivity) between activated regions. Modelling levels ... connectivity. Neuronal model used in Dynamic Causal Modelling for fMRI ... – PowerPoint PPT presentation

Number of Views:129
Avg rating:3.0/5.0
Slides: 59
Provided by: oda8
Category:

less

Transcript and Presenter's Notes

Title: Generative models of brain activity as measured in functional MRI and MEGEEG


1
Generative models of brain activity as measured
in functional MRI and MEG/EEG
  • Olivier David
  • odavid_at_ujf-grenoble.fr
  • www-nifm.ujf-grenoble.fr/people/odavid
  • Inserm U594 Neuroimagerie Fonctionnelle et
    Métabolique
  • Université Joseph Fourier, Grenoble, France

Networks in Cognitive Systems / Trends and
Challenges in Biomedicine From Cerebral
Process to Mathematical Tools Design, Valparaiso,
Chile December 11-15, 2006
2
EEG/fMRI Program in Grenoble
Since January 2005
  • Aktham Asfour Frédéric Grouiller
  • Olivier David Sébastien Reyt
  • Alexandre Krainik
  • Christoph Segebarth
  • Inserm U594 Functional Metabolic Neuroimaging
  • Antoine Depaulis Agata Wozniak
  • Colin Deransart
  • Isabelle Guillemain
  • Philippe Kahane
  • Lorella Minotti
  • Laurent Vercueil
  • Inserm U704 Dynamics of Neural Networks

Grenoble Institute of Neuroscience (GIN)
Identification of epileptic networks fMRI EEG
Control of epileptic networks Adaptive
neurostimulation Biofeedback
  • Small animal (rat, mouse)
  • Patient

3

IMAGING


Neural mechanisms?
SMALL ANIMAL
HUMAN

ELECTRO- PHYSIOLOGY
4
Generative models
Forward problem Given the generative model, one
can predict the measured data
  • Neuronal variables
  • Synaptic time constant
  • Synaptic efficacy
  • Inhibition/Excitation
  • Connectivity (networks)
  • Macroscopic data at the brain level
  • Local field potentials
  • Scalp EEG/MEG
  • Functional MRI

Inverse problem Given the measured data, one can
estimate the generative model
Dynamic Causal Modelling
5
Outline
  • Dynamic Causal Modelling (DCM)
  • Neural modelling of macroscopic brain activity
  • Linear bilinear models
  • Neural mass models
  • Functional MRI
  • Biophysics of fMRI
  • Hemodynamic model
  • DCM for fMRI
  • EEG/MEG
  • Biophysics of EEG/MEG
  • Forward model
  • DCM for evoked responses in EEG/MEG

6
Modelling levelsin functional neuroimaging
DCM
  • How does this implementation operate (in
    mechanistic terms)?
  • Models of interactions (connectivity) between
    activated regions
  • Where is implemented a given cerebral process?
  • Activation maps
  • What does this process mean (in computational
    terms)?
  • Models of neural codes

7
Dynamic Causal Modelling Concept
Friston et al., NeuroImage, 2003 David et al.,
NeuroImage, 2006
Perturbations
Model of neural interactions
Neuronal networks
Electric model
Hemodynamic model
fMRI
MEG/EEG
8
Generative models
Physiological models
Neural networks
Hemodynamic parameters
Electrical parameters
EEG/MEG
fMRI
Identification of networks by estimating the
model parameters
9
Dynamic Causal Modelling Formalism
  • A DCM is a dynamical system.
  • It is specified in terms of
  • A state equation
  • An output equation
  • The parameters q are estimated from the data y

Neuronal input-state-output system
input
output
EEG/MEG fMRI
Stimulus
10
Neural modelling of macroscopic brain activity
11
Functional principles
  • Functional segregation
  • Local connectivity
  • Functional integration
  • Long range connectivity

12
Modelling levels
2
3
1
4
13
Structural Equation Modelling (SEM)
u2
u3
2
u1
a32
3
a21
Not physiological Not dynamical
1
a34
4
a41
  • Residual covariance CuuT
  • Measured covariance S
  • Modelled covariance S
  • Estimation of A to minimise S-S

u4
14
Dynamical system
  • System
  • Set of elements which interact in a spatially and
    temporally specific fashion
  • System dynamics
  • Change of state vector in time
  • Causal effects in the system
  • Interactions between elements
  • External inputs u
  • System parameters ?
  • Specify the nature of interactions
  • General state equation for non-autonomous systems

15
Linear dynamical system
FG right
FG left
LG lingual gyrus FG fusiform gyrus
z4
z3
a13
a12
Visual input in the left visual field (LVF) and
right visual field (RVF)
c12
LG left
LG right
z1
z2
RVF
LVF
u2
u1
a11
state changes
effective connectivity
system state
Input parameters
extrinsic inputs
16
Bilinear dynamical system
FG right
FG left
z4
z3
LG left
LG right
z1
z2
RVF
LVF
u2
u1
CONTEXT
u3
17
State equation of a bilinear system
state changes
intrinsic connectivity
m extrinsic inputs
system state
input connectivity
modulation of connectivity
Neuronal model used in Dynamic Causal Modelling
for fMRI
18
Modelling levels
2
3
1
4
19
Structure of a cortical area
Jones, PNAS, 2000
Interneuron
Pyramidal cell
Cortical minicolumn (400 pyramidal cells)
50 mm
Cortical area
Cortical macrocolumn
900 mm
20
Neural mass model
Jansen Rit, Biol. Cybern., 1995
Neuronal population
Mean firing rate m(t)
Mean firing rate m(t)
Mean membrane potential v(t)
21
Neural mass modelof a cortical area
Jansen Rit, Biol. Cybern., 1995
E x t r i n s i c i n p u t s
Excitatory interneurones He, te
g1
g2
Pyramidal cells He, te
MEG/EEG signal
g3
g4
Inhibitory interneurones Hi, ti
Excitation
Inhibition
  • te, ti synaptic time constants (excitation
    inhibition)
  • He, Hi synaptic efficacies (excitation
    inhibition)
  • g1,,4 connectivity constants

Parameters
22
Neural mass modelof a cortical area
David et al., Neuroimage, 2005
Extrinsic lateral connections
inhibitory interneurons
Extrinsic forward connections
spiny stellate cells
Intrinsic connections
pyramidal cells
Extrinsic backward connections
23
Rules of cortical connectivity
Felleman Van Essen, Cereb. Cortex, 1991 David
et al., NeuroImage, 2005
1
2
Forward
Backward
Lateral
Supra granular
Cortex
Layer IV (granular)
Infra granular
1
2
1
2
1
2
24
Hierarchical cortical networks
inhibitory interneurons
2
3
spiny stellate cells
1
pyramidal cells
Intrinsic Forward Backward Lateral
Input u
Neuronal model used in Dynamic Causal Modelling
for EEG/MEG
25
Neural coupling and synchronisation in EEG/MEG
David Friston, NeuroImage, 2003
abu10
1
2
atd
26
fMRI
27
Generative model of fMRI
fMRI signal
Neuronal activity (LFP)
Stimulus
Hemodynamic model
Neuronal model
Bilinear model of neural interactions
Hemodynamic balloon model
28
Summary of DCM for fMRI
Neuronal state equation
Bilinear model
Effective connectivity
Modulation of connectivity
Input u(t)
Extrinsic inputs
c1
b23
Integration of differential equations
Neural states
a12
x2(t)
x3(t)
Hemodynamic model
x1(t)
y
y
y
BOLD
29
Modelled neural signals
stimuli u1
context u2
u1
-

-
u2
x1

x1

x2
x2
-
-
30
Biophysics of fMRI
Raichle, Sc. American, April 1994
  • Indirect effects of neuronal activation
  • Variations of blood volume
  • Variations of blood flow
  • Variations of deoxyhemoglobin concentration

Dt
fMRI signal
0
20
Time (s)
31
The hemodynamic Balloon model
Friston et al., Neuroimage, 2000
  • 5 hemodynamic parameters
  • Empirically determineda priori distributions
  • Computed separately for each area (like the
    neural parameters)

32
Friston et al., Neuroimage, 2000
The hemodynamic Balloon model
Neuronal activity x
s
y
0
v
q
f
33
Parameter estimation
stimulus function u
  • Combining the neural and hemodynamic states gives
    the complete forward model.
  • An observation model includes measurement error
    e and confounds X (e.g. drift).
  • Bayesian parameter estimation by means of a
    Levenberg-Marquardt gradient ascent, embedded
    into an Expectation-Maximisation (EM) algorithm.
  • Result Gaussian a posteriori parameter
    distributions, characterised by mean ??y and
    covariance C?y.

neuronal state equation
parameters
hidden variables
state equation
BOLD response
observation model
34
Model comparison
Pitt Miyung, TICS, 2002
  • Given some hypotheses on the structure and
    functional mechanisms of a system, which model is
    the best?
  • Find the model mi with the largest evidence
    p(ymi).
  • Which model represents the best trade-off between
    the data fit and the model complexity?

35
Model comparison
Penny et al., NeuroImage, 2004
  • Which model is the best among a set of competing
    models?
  • Bayes law
  • Model evidence

36
Modulation of attention
Büchel et al., Cereb. Cortex, 1997
  • Stimulus
  • 250 radially moving dots (4.7 degrees/sec).
  • Pre-acquisition
  • 5 x 30s blocks avec 5 changes of speed (reduction
    of 1).
  • Task to detect speed changes.
  • Acquisition
  • No change in speed.
  • F A F N F A F N S .............
  • F fixation dot only.
  • A - stimulus with attention (detection of change
    in speed).
  • N - stimulus without attention.
  • S no movement.

LGN
PPC
PFC
V1
V5
37
Modulation of attention
Friston et al., Neuroimage, 2003
Attentional modulation of prefontal connections
Photic stimulation
.43
.53 (97)
SPC
.40
.49 (97)
.62
V1
IFG
.92
.35
.53
-.05
V5
Segregation of movement information in V5
.73
38
Comparaison of 3 models
Penny et al., Neuroimage, 2004
Model 1modulation by attention of V1?V5
Model 2modulation by attention of SPC?V5
Model 3modulation by attention of V1?V5 and
SPC?V5
Attention
Attention
Photic
Photic
Photic
SPC
0.55
0.03
0.85
0.86
0.85
0.70
0.70
0.75
1.36
0.84
1.42
1.36
0.89
0.85
V1
-0.02
-0.02
-0.02
0.56
0.57
0.57
V5
Movement
Movement
Movement
0.23
0.23
Attention
Attention
  • Bayesian model selection
  • Model 1 better than model 2
  • Model 1 model 3 equivalent
  • Decision for model 1, because attention modulates
    mainly V1?V5

39
EEG/MEG
40
EEG MEG
Marin et al., Hum. Brain Mapp., 1998
MEG
EEG
41
Generative model of EEG/MEG
Dynamics f
Spatial forward model g
ERP/ERF
states x
Input u
parameters ?
data y
42
Somatosensory evoked potential
mode 1
3.57 (99)
SII
SII
0.95 (53)
Forward Backward Lateral
mode 2
27.68 (100)
2.67 (100)
SI
input
mode 3
43
Perception of faces vs. houses
Haxby et al., Science, 2001
N170 Visage-Maison
44
David et al., Neuroimage , 2006
mode 1
40
20
PPA
PPA
0
STS
-20
-40
5.56 (100)
FFA
-60
0.61 (100)
0
200
400
40
mode 2
RS
RS
20
IOG
0.11 (100)
0
0.55 (100)
-20
-40
-60
0
200
400
V1
V1
40
mode 3
20
0
-20
input
-40
0
-60
0
200
400
0
200
400
time (ms)
Time ms
45
Auditory oddball andmismatch negativity (MMN)
  • 600 stimuli, 100 ms duration
  • Frequent event (80) tone 1000 Hz
  • Rare event (20) tone 2000 Hz
  • 128 EEG channels

Rare-Frequent
46
Mismatch negativity (MMN)
Näätänen, Int. J. Psychophysiol., 2003
  • Negative component of the ERP to any
    discriminative change in some repetitive aspect
    of auditory stimulation
  • Based on the presence of a memory trace formed by
    the preceding sound stimuli
  • Duration of the traces involved 10 sec
  • Bilateral auditory and bilateral (right )
    frontal cortex

47
Auditory oddballmodel comparaison
PC
OF
OF
STG
200
4.22
150
A1
A1
100
input
50
Forward Backward Lateral
0
F
B
FB
FBL
48
30
mode 1
PC
20
10
0
-10
OF
OF
-20
0
200
400
30
mode 2
20
10
2.74 (98)
2.17 (95)
3.58 (100)
STG
4.09 (100)
0
-10
3.23 (97)
-20
0
200
400
A1
A1
30
1.93 (100)
mode 3
20
10
0
-10
input
-20
600
0
200
400
0
time (ms)
0
200
400
49
Implanted epileptic patientDCM / 1 Hz electrical
stimulation
50
Implanted epileptic patient
Electrode showing first ictal patterns
51
Spontaneous seizure
52
1 Hz neurostimulation
Electrode showing first ictal patterns
Electrode of stimulation
53
Induced seizure
54
Short-term plasticity
55
DCM location
Stimulation of amygdala
  • Amygdala
  • Temporal pole
  • Anterior hippocampus
  • Insula

56
DCM time series
  • Amygdala
  • Temporal pole
  • Anterior hippocampus
  • Insula

57
DCM model
0.98
42 / 59
4.3
(x1.4)
Amyg
Temp Pole
Hippo
Insula
52 / 59
27 / 26
49
(x1.1)
(x0.96)
0.29
Fit
Measurement
50 ms
Beginning of stim
End of stim
58
References
  • Buchel C, Friston KJ. Modulation of connectivity
    in visual pathways by attention cortical
    interactions evaluated with structural equation
    modelling and fMRI. Cereb Cortex.
    19977(8)768-78.
  • David O, Friston KJ. A neural mass model for
    MEG/EEG coupling and neuronal dynamics.
    Neuroimage. 200320(3)1743-55
  • David O, Harrison L, Friston KJ. Modelling
    event-related responses in the brain. Neuroimage.
    200525(3)756-70
  • David O, Kiebel SJ, Harrison LM, Mattout J,
    Kilner JM, Friston KJ. Dynamic causal modeling of
    evoked responses in EEG and MEG. Neuroimage.
    200630(4)1255-72
  • Felleman DJ, Van Essen DC. Distributed
    hierarchical processing in the primate cerebral
    cortex. Cereb Cortex. 19911(1)1-47
  • Friston KJ, Mechelli A, Turner R, Price CJ.
    Nonlinear responses in fMRI the Balloon model,
    Volterra kernels, and other hemodynamics.
    Neuroimage. 200012(4)466-77
  • Friston KJ, Harrison L, Penny W. Dynamic causal
    modelling. Neuroimage. 200319(4)1273-302
  • Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten
    JL, Pietrini P. Distributed and overlapping
    representations of faces and objects in ventral
    temporal cortex. Science. 2001293(5539)2425-30
  • Jansen BH, Rit VG. Electroencephalogram and
    visual evoked potential generation in a
    mathematical model of coupled cortical columns.
    Biol Cybern. 199573(4)357-66
  • Jones EG. Microcolumns in the cerebral cortex.
    Proc Natl Acad Sci U S A. 200097(10)5019-21
  • Marin G, Guerin C, Baillet S, Garnero L, Meunier
    G. Influence of skull anisotropy for the forward
    and inverse problem in EEG simulation studies
    using FEM on realistic head models. Hum Brain
    Mapp. 19986(4)250-69
  • Naatanen R. Mismatch negativity clinical
    research and possible applications. Int J
    Psychophysiol. 200348(2)179-88
  • Penny WD, Stephan KE, Mechelli A, Friston KJ.
    Comparing dynamic causal models. Neuroimage.
    200422(3)1157-72
  • Pitt MA, Myung IJ. When a good fit can be bad.
    Trends Cogn Sci. 20026(10)421-425
  • Raichle, Sc. American, April 1994
Write a Comment
User Comments (0)
About PowerShow.com