Nuclear Superfluidity in the Crust of Neutron Stars - PowerPoint PPT Presentation

1 / 32
About This Presentation
Title:

Nuclear Superfluidity in the Crust of Neutron Stars

Description:

... in the Crust of. Neutron Stars. Introduction: inner crust structure. Superfluid properties: HFB. Collective excitations: QRPA. Specific heat and cooling ... – PowerPoint PPT presentation

Number of Views:91
Avg rating:3.0/5.0
Slides: 33
Provided by: nsa3
Category:

less

Transcript and Presenter's Notes

Title: Nuclear Superfluidity in the Crust of Neutron Stars


1
Nuclear Superfluidity in the Crust of Neutron
Stars
Nicolae Sandulescu
Institute of Atomic Physics, Bucharest
  • Introduction inner crust structure
  • Superfluid properties HFB
  • Collective excitations QRPA
  • Specific heat and cooling
  • Summary and conclusions

Nguyen Van Giai IPN-Orsay Elias Khan
IPN-Orsay
R.J.Liotta KTH-Stockholm

2
E. Khan, N. Sandulescu Nguyen Van Giai
3
Inner Crust Matter
0.001r0
r0
0.5 r0
Crystal lattice structures
4
Elementary cells
Wigner-Seitz cell
Elementary cell
Lattice
5
Inner crust equation of state
F Enuc Ecoul Eelec TS - mnN-mpZ
Free energy
Enuc Evol rEsurf r, rEls r, r Epair
r,k
dF0, b-equilibrium
(N,Z,Rcell)
Microscopic calculations
mean field type HFB
I) Inner crust structure N/Z
II) Pairing properties D(r,T,w)
III) Collective excitations QRPA
6
Crust Structure Negele Vautherin
Enuc Evol r Esurf r, r Els(p) Els(n)
Epair r,k
0
0
  • HF calculations T0
  • Wigner Seitz approximation
  • Boundary conditions at rRws

jl0 leven djl/dr0 lodd
Main result cells with Z 40,50,32
7
Inner Crust Structure
J.W. Negele, D. Vautherin, NPA207 (1973) 298
r0/100
500Zr40
r0/42.9
950Sn50
r0/7.84
1800Sn50
r0/3.37
1500Zr40
r0/2.03
982Ge32
Role of pairing correlations ?
8
Finite-Temperature HFB
EnucEvol rEsurf r, rEls(p)Els(n) Epair
r,k
DT(r) Vpair tT(r)
fi(1eEi/kT)-1
N.S, Phys.Rev.C70 (2004) 025801
9
Collective Modes in the Inner Crust
  • Collective modes in a non-uniform condensate
  • coherence length z hvF /pDF
  • distance between clusters L
  • ( a) L gtgt z the case of uniform
    condensate
  • (b) L lt z needs for microscopic
    calculations !

10
Time-dependent HFB
EnucEvol rEsurf r, rEls(p)Els(n) Epair
r,k
Linear response
Densities fluctuations

ph
pp
hh
11
QRPA response
Residual interaction
E.Khan, N. S.,M.Grasso, Nguyen Van Giai, Phys.
Rev. C66 (2002)024309
12
Pairing correlations
Enuc ESkyrme Epair r,k
Epair r,k
Pairing in uniform neutron matter
?
13
Pairing effective interactions
kF lt 0.9
Vbare
Gogny force
Vpair V01-h(r/r0)ad(r-r)
a0.45 h0.7
I) V0-430
Dmax 3 MeV
Vtotal
II) V0-330
Dmax 1 MeV
Mtotal
Ecut-off60 MeV
C.Shen,U.Lombardo,P.Schuck,W.Zuo,N.S,
Phys.Rev.C67(2003)
14
Wigner-Seitz cells
J.W. Negele, D. Vautherin, NPA207 (1973) 298
r0/100
500Zr40
r0/42.9
950Sn50
r0/7.84
1800Sn50
r0/3.37
1500Zr40
r0/2.03
982Ge32
15
Density in the Wigner-Seitz Cells
N.S ,Nguyen Van Giai,R.J.Liotta,
Phys.Rev.C69(2004)045802
16
Pairing Field in the Wigner-Seitz Cells
N.S, Phys.Rev.C70 (2004) 025801
17
Pairing Field in the Wigner-Seitz Cells
N.S, Phys.Rev.C70 (2004) 025801
18
Specific Heat of Inner Crust Matter
C(t)V CV (n) CV (e) CV(protonslattice)
  • normal phase

CV (n D0) gt CV (e)
D
CV(n) CV(nD0) e-D/kT
  • suprafluid phase
  • FT-HFB approx

SHFB Si (1fi)ln(1fi)-filnfi
fi(1eEi/kT)-1
19
Specific Heat in the FT-HFB Approach
N.S, Phys.Rev.C70 (2004) 025801
20
Specific Heat in the FT-HFB Approach
N.S, Phys.Rev.C70 (2004) 025801
21
Collective Modes in the Inner Crust
  • Non-uniform condensate
  • coherence length z hvF /pDF
  • distance between clusters L
  • ( a) L gtgt z the case of uniform
    condensate
  • (b) L lt z QRPA
    calculations !

22
Supergiant resonances
L1
Z50 N1750
L0
Effect on specific heat ?
E.Khan,N.S,Nguyen Van Giai, Phys.Rev.C, in press
23
Specific heat of collective modes
Z50 N1750
24
Cooling time of Neutron Stars
cooling time
conductivity
diffusion
Lattimer et al, ApJ425(1994)802
25
Mass-Radius Constraints from Cooling Time
Lattimer et al, ApJ425(1994)802
1.15 M0 lt M lt1.5 M0 tw 10 years Superfluidity
9 km lt R lt 11.5 km No Superfluidity 6.8 km lt
R lt 8.5 km
26
Summary and Conclusions
  • Self- consistent treatment of inner crust matter
  • - FT-HFB and QRPA with the same
    energy functional
  • - pairing effects on inner crust
    structure ?
  • Nuclear superfluidity in the inner crust
  • - temperature is essential in the outer
    part of the crust and for weak pairing
  • - nuclear clusters can either suppress or
    enhance the pairing correlations
  • Specific heat of baryonic matter
  • - sensitive to the presence of the
    clusters temperature
  • - very strong dependence on the screening
    of pairing force !
  • Collective modes in the inner crust
  • - low-lying supergiant resonances
  • - important contribution to the
    specific heat !

27
Nguyen Van Giai IPN - Orsay
Elias Khan IPN - Orsay
R. J. Liotta KTH - Stockholm
28
Density in the Wigner-Seitz Cells
N.S ,Nguyen Van Giai,R.J.Liotta,
Phys.Rev.C69(2004)045802
29
Mean Field in the Wigner-Seitz Cells
N.S ,Nguyen Van Giai,R.J.Liotta,
Phys.Rev.C69(2004)045802
30
Specific Heat of Collective Modes
  • specific heat
  • entropy

Scoll Sn (1gn)ln(1gn)-gnlngn
- Sij (1gij)ln(1gij)-gijlngij
gnexp(Wn/kT)-1-1
(Wn QRPA spectrum)
(Ei - HFB spectrum )
gijexp((EiEj)/kT)-1-1
31
Density profiles of WS cells
Size ( R ) and coherence length (z)
1800Sn R28 fm z3 fm 982Ge R14 fm
z10 fm
32
Pairing field in the WS cells
Write a Comment
User Comments (0)
About PowerShow.com