Rotation - PowerPoint PPT Presentation

1 / 18
About This Presentation
Title:

Rotation

Description:

A cockroach rides the rim of a rotating merry-go-round. ... If is decreasing , does the cockroach have. radial acceleration. b) tangential acceleration ... – PowerPoint PPT presentation

Number of Views:214
Avg rating:3.0/5.0
Slides: 19
Provided by: drna8
Category:

less

Transcript and Presenter's Notes

Title: Rotation


1
CHAPTER-10
  • Rotation

2
Ch 10-2 Rotation
  • Rotation of a rigid body about a fixed axis
  • Every point of the body moves in a circle, whose
    center lies on the axis of rotation
  • Every point of the body moves through the same
    angle during a particular interval of time
  • Angular position ? Angle of reference line
    (fixed on rigid body and ? rotational axis)
    relative to Zero angular position
  • ? (rad) s/r 1 rad 57.3?

3
Ch 10-2 Rotational Variable
  • Linear displacement
  • ?x xf - xi
  • Average linear velocity
  • vavg?x/?t(xf - xi)/?t
  • Instantaneous linear velocity
  • v lim ?v/?t dv/dt
  • Average linear acceleration
  • aavg ?v /?t(vf - vi )/(tf ti)
  • Instantaneous linear acceleration
  • a lim ?v/?t
  • dv/dt d2?/dt2
  • Angular displacement
  • ?? ?f - ?i
  • Average angular velocity
  • ?avg??/?t(?f - ?i)/?t
  • Instantaneous angular velocity
  • ? lim ??/?t d?/?t
  • Average angular acceleration
  • ?avg ?? /?t(?f - ?i )/(tf ti)
  • Instantaneous angular acceleration
  • ? lim ??/?t
  • d?/dt d2?/dt2

4
Ch 10-3 Are Angular quantities Vectors?
  • Yes, they are
  • Right hand curl rule

5
Ch 10-Check Point 1
  • A disk can rotate about its central axis like the
    one . Which of the following pairs of values for
    its initial and final angular position ,
    respectively, give a negative angular
    displacement?
  • A) -3 rad, 5 rad
  • B) -3 rad, -7 rad
  • C) 7 rad, -3 rad
  • ?? ?f-?i 5-(-3)8 rad
  • ?? ?f -?i -7-(-3)-4 rad
  • ?? ?f - ?i -3-7 -10 rad
  • Ans b abd c

6
Ch 10-4 Rotation with Constant Angular
Acceleration- Equations of Motion
  • Linear Motion
  • ?xtvavg t(vfvi)/2
  • vf viat
  • vf2 vi22ax
  • x vitat2/2
  • Rotational Motion
  • ?? t?avgt(?f?i)/2
  • ?f ?i?t
  • ?f2 ?i22??
  • ? ?it ?t2/2

7
Ch 10 Check Point 2
  • In four situations, a rotating body has an
    angular position ?(t) given by
  • a) ? 3t-4
  • 2) ? -5t34t26
  • 3) ? 2/t2-4/t
  • 4) ? 5t2-3
  • To which of these situations do the equations of
    Table 2-1 apply?
  • Ans Table 10-1 deals with constant angular
    acceleration case hence calculate acceleration
    for each equation
  • 1) ? d2 ?/dt20
  • 2) ? d2 ?/dt2-30t8
  • 3) ? d2 ?/dt2 12/t4-8/t2
  • 4) ? d2 ? /dt2 10
  • Ans 1 and 4 ( constant angular acceleration case)

8
Ch 10-5 Relating the Linear and Angular Variables
  • Position sr?
  • Speed ds/dtr d?/dt
  • v r?
  • Period T 2?r/v 2?/?
  • Acceleration
  • Tangential acceleration atdv/dtr d?/dt r?
  • Radial acceleration aRv2/r r ?2

9
Ch 10 Check Point 3
  • A cockroach rides the rim of a rotating
    merry-go-round . If the angular speed of the
    sytem ( merry-o-round cockroach) is constant ,
    does the cockroach have
  • a) radial acceleration
  • b) tangential acceleration
  • If ? is decreasing , does the cockroach have
  • radial acceleration
  • b) tangential acceleration
  • at ? r
  • aR ?2 r
  • Then
  • Yes aR b) No at
  • If ? is decreasing then
  • a) yes b) yes

10
Ch 10-6 Kinetic Energy of Rotation
  • Kinetic energy of a rapidly rotating body sum of
    particles kinetic energies (vcom0)
  • K ?Kparticle ½(?miv2i) but viri?I
  • Then K?Ki½ ? mi(ri?i)2
  • ½ ?(mri)2 ?2where ?i2 ?2
  • I ?(mri)2 I is rotational inertia or
    moment of inertia
  • Then rotational kinetic energy K ½ I?2
  • Rotational analogue of m is I
  • A rod can be rotated easily about an axis through
    its central axis (longitudinal) case a than an
    axis ? to its length case b

11
Ch 10-7 Calculating Rotational Inertia
  • I ?(mri)2 ?mdr2
  • Parallel-Axis Theorem
  • IIcomMh2
  • Example (a) For rod IcomML2/12
  • And for two masses m , each has moment of inertia
    ImmL2/4 and then ItotIrod2Im
  • Itot ML2/12 2(mL2/4)
  • L2(M/12 m/2)
  • For case (b)
  • Then IrodIcomMh2 ML2/12M(L/2)2
  • ML2/3
  • Itot Irod Im ML2/3 mL2
  • L2(M/3 m)

12
(No Transcript)
13
Ch 10 Check Point 4
  • The figure shows three small spheres that rotates
    about a vertical axis. The perpendicular distance
    between the axis and the center of each sphere is
    given. Rank the three spheres according to their
    rotational inertia about that axis, greatest
    first.
  • Imr2
  • 1) I36 x 1236 kg.m2
  • 2) I9 x 2236 kg.m2
  • 3) I4 x 3236 kg.m2
  • Ans All tie

14
Ch 10 Check Point 5
  • The figure shows a book-like object (one side is
    longer than the other) and four choices of
    rotation axis, all perpendicular to the face of
    the object. Rank the choices according to the
    rotational inertia of the object about the axis,
    greatest first.
  • Parallel Axis Theorem
  • IIcomMh2
  • Moment of inertia in decreasing order
  • I1 I2 I4 and I3

15
Ch 10-8 Torque
  • Torque is turning or twisting action of a body
    due to a force F
  • If a force F acts at a point having relative
    position r from axis of rotation , then
  • Torque ? r F sin?rFt r?F, where (? is
    angle between r and F)
  • Ft is component of F ? to r, while r? is ?
    distance between the rotation axis and extended
    line running through F.
  • r?is called moment arm of F.
  • Unit of torque (N.m)
  • Sign of ? Positive torque for counterclockwise
    rotation
  • Negative torque for clockwise
    rotation

16
Ch 10-9 Newtons Second Law for Rotation
  • Newtons Second Law for linear motion
  • Fnet ma
  • Newtons Second Law for linear motion
  • ?net I?
  • Proof
  • ?netFtrmatrm(r?)rmr2 ?
  • where Ftmat atr?
  • ?netFtrmatrmr2?I?
  • ? expressed in radian/s2

17
Ch 10 Check Point 6
  • ? rt x F
  • ?F2 0 ?F5
  • ?F3 ?F1 maximum
  • ?F4 next to maximum
  • Ans F1 and F3 (tie), F4, then F1 and F5( Zero,
    tie)
  • The figure show an overhead view of a meter stick
    that can pivot about the dot at the position
    marked 20 (20 cm). All five forces on the stick
    are horizontal and have the same magnitude. Rank
    the forces according to magnitude of the torque
    they produce, greatest first

?
18
Ch 10-10 Work and Rotational Kinetic Energy
  • Linear Motion
  • Work-Kinetic Energy theorem
  • ?KKf-Kim(vf2-vi2)/2W
  • Work in one dimension motion W?F.dx
  • Work in one dimension motion under constant force
  • WF?dx Fx ?X
  • Power (one dimension motion)
  • P dW/dt F.v
  • Rotation
  • Work-Kinetic Energy theorem
  • ?KKf-KiI(?f2-?i2)/2W
  • Work in rotation about fixed axis W??.d?
  • Work in rotation about fixed axis under constant
    torque ?
  • W??d? ???
  • Power(rotation about fixed axis )
  • P dW/dt ?.?
Write a Comment
User Comments (0)
About PowerShow.com