The High-Redshift Universe - PowerPoint PPT Presentation

About This Presentation
Title:

The High-Redshift Universe

Description:

... in all available deep NIR HST images (Bouwens et al 2005) Quasar Density at z~6 Based on nine z5.7 quasars: ... First results from the Deep survey, ... – PowerPoint PPT presentation

Number of Views:210
Avg rating:3.0/5.0
Slides: 99
Provided by: af75
Category:

less

Transcript and Presenter's Notes

Title: The High-Redshift Universe


1
The High-Redshift Universe
  • Alberto Fernández-Soto
  • Universitat de València

2
Plan of this talk
  • Definition and evolution of high-redshift
  • Objects at high redshift
  • Selection techniques for high-z objects
  • Observations
  • Towards galaxy evolution

3
How high is high?
  • Start with the discovery and identification of
    QSOs in the 60s (3C273 z0.16)
  • For 30 years monsters dominated (z 4)
  • Radiogalaxies -- Quasars
  • Colour selection drove towards normal galaxies
  • LBGs _at_ z 3 -- Dropouts _at_ z 3 5
  • QSOs again pushed in (SDSS z 6)
  • GRBs stand a chance (GRB050904 _at_ z6.29)
  • but not as high as z1000!

4
(No Transcript)
5
  • Data compiled by X. Fan

6
Search for high-z objects
  • Identification of peculiar objects
  • X-ray sources ? AGNs ? Clusters of
    galaxies ? Peculiar stars (or)
  • Radio sources ? Radio-loud QSOs
  • Important selection effects
  • Plagued QSO catalogues for years
  • Non-detectability of normal galaxies
  • By definition!

7
Colour selection
  • Use of hydrogen-imprinted features
  • Peebles 1967, Partridge (1974), BVR selection

(Piskunov y Kupka 2001)
8
Intergalactic Absorption
quasar
Charlton Churchill (2000)
z 1.3
Charlton Churchill (2000)
z 3.6
z 6.3
Becker et al. (2001)
9
The perfect QSO spectrum
10
(Steidel 1999)
11
NOAODWFS(Jannuzzi et al)
12
The importance of it all
  • Neutral hydrogen is ubiquitous
  • The features imprinted by HI are the same, for
    all types of objects, at a given redshift
  • ? Possibility of unbiased selection

13
Colour-selected normal galaxiesin the HDF
  • (Lanzetta et al 1996)

14
  • (Giavalisco 2001)

15
Expected colors of high z Lyman break galaxies
are well defined.
(Steidel et al 1999)
16
(Steidel et al 1999)
17
(Le Fevre et al 2005)
18
(Le Fevre et al 2005)
19
Quasars re-enter the stage
  • Colour selection can also be applied to QSOs
  • High-redshift QSOs much more luminous than
    galaxies, but much more scarce
  • Need for photometric, large-area surveys
  • SDSS ? ugriz colour images ? 10 000 square
    degrees ? selection of QSOs up to z gt 6

20

17,000 Quasars from the SDSS Data Release One
5
Ly a
3
2
CIV
CIII
1
MgII
OIII
Ha
0
4000 A
9000 A
21
The Highest Redshift Quasars Today(SDSS, Fan
et al)
  • zgt4 700 known
  • zgt5 30
  • zgt6 7
  • SDSS i-dropout Survey
  • By Spring 2004 6000 deg2 at zABlt20
  • Fourteen luminous quasars at zgt5.7
  • 20 40 at z6 expected in the whole survey


Total Discoveries
SDSS Discoveries
22
(No Transcript)
23
Photometric redshifts
  • Originally in Baum (1963)
  • Koo (1985) Poor mans redshift machine
  • Loh Spillar (1986) Cosmology
  • Impulse with Hubble Deep Fields
  • Deep, high quality, multi-colour images
  • High spatial resolution
  • Good spectral sample for calibration
  • Nowadays common tool of the trade

24
Applications
  • Poor mans redshift machine
  • Applications in (particularly)
  • Large volumes of data
  • Faint galaxy samples
  • Crowded fields
  • Proven accuracy Dz/(1z) 0.05 (rms)
  • Catastrophic error rate lt 5
  • Already tested out to z 6

25
Sbc z0.66
26
Sbc z1.29
27
Irr z2.51
28
SB1 z4.36
29
SB1 z7.96
30
Z(phot) vs Z(spec)
(Fernandez-Soto et al 2001)
31
Colour selection grism spectra
  • z5.83
  • Selected inside HUDF via BVizJH photometry
  • (Malhotra et al 2005)

32
Emission-line searches
  • Emission line searches for high redshift galaxies
    (tuned to Lyman-a) existed for many years, with
    very low success rates
  • Only over the last few years narrow-band searches
    tuned at z6 have offered results
  • Particular mention to
  • LALA
  • Keck
  • Subaru

33
Subaru emission-line searches
  • NB711 _at_ z4.86 (Masami et al 2003)
  • NB816 _at_ z5.75 (Ajiki et al 2003)
  • NB921 _at_ z6.55 (Kodaira et al 2003)

34
Subaru emission-line search
  • Narrow-band filter tuned to Lyman a _at_ z6.55
  • (Kodaira et al 2004)

35
Keck emission-line survey(Hu et al 2005)
36
The Large Area Lyman Alpha Survey
z O Volume Sensitivity Candidates, Spectroscopic Success rate
4.5 1.4x106 Mpc3 (1/2 in Bootes) 1.7x10-17 ergs/s/cm2 350 gt 70
5.7 6 x105 Mpc3 (1/3 in Bootes) 1x10-17 ergs/s/cm2 50 70
6.6 1.5x105 Mpc3 (all in Bootes) 2x10-17 ergs/s/cm2 3 1 of 3 confirmed.
37
Candidate z6.5 LALA galaxies
Ic (NDWFS) zSDSS NB918
All data from NOAO 4m telescopes NB918 stack is
24 hours integration.
38
z 9180
A
  • Gemini image of z6.535 galaxy
  • (Rhoads et al. 2004)

39
LALA J142442.24353400.2 _at_ z6.535
  • Gemini spectrum shows asymmetric line, no
    continuum.
  • (Rhoads et al. 2004)

40
Observing the Distant Universe with clusters
Gravitational Telescopes Lensed Galaxies are
much brighter
Use a BIG telescope! 1021m primary with an 8m
secondary! The Cosmic Telescope! NOTE magnifica
tion x25 ? from z6 to z1.5 ? from z10 to
z2.5
1021m (M1014Mo)
41
A2218 (zcl0.17)
A2218 3 spectroscopic confirmed multiply
imaged systems.
42
A z10 galaxy
  • (Pello et al 2004)

43
Some large ongoing surveys
44
DEEP2
  • DEEP
  • Keck LRIS
  • 1000 galaxies to I24.5
  • DEEP2
  • Keck Deimos, R5000
  • 50000 galaxies 0.7 lt z lt 1.4 (BRI selected)

45
VVDS
  • VLT VIMOS
  • Imaging with CFHT (BVRI), NTT (K), ESO2.2 (U)
  • Shallow
  • 100 000 galaxies to AB(I)22.5, R250
  • Subsample observed at R2500
  • Deep
  • 50 000 galaxies to AB(I)24
  • Ultra-Deep
  • 1000 galaxies to AB(I)26 observed with IFU

46
GOODS
  • 300 sq. arcmins., HDFN and CDFS
  • Spitzer (Dickinson)
  • Ultradeep IRAC, deep IRAC and MIPS
  • Hubble (Giavalisco)
  • BViz deep images
  • Extra data from
  • KPCTIO (U),
  • VLT (NIR),
  • VLT GeminiKeck (spectroscopy),
  • XMMChandra (X rays)

47
ALHAMBRA
  • Aim 8 x ½ square degree fields
  • Calar Alto 3.5m, LAICA W2000
  • AB(BVRI) 25, AB(JHK) 22
  • Designed with photometric redshifts in mind
  • Optical coverage from 3500 to 9500 A
  • 20 non-overlapping 300 A-wide filters
  • Redshift accuracy Dz / (1z) 0.02
  • 800 000 galaxies to AB(I)24
  • 2000 galaxies at zgt5

48
Filter system and survey depth
  • (Moles et al 2006)
  • (Benitez et al 2006)

49
(No Transcript)
50
  • What have we learned about the
  • high-redshift
  • universe?

51
VVDS Redshift distribution
(Le Fevre et al 2005) First results from the
Deep survey, over 9000 galaxies with 17.5 lt AB(I)
lt 24 1000 galaxies _at_ z gt 1.4
52
Luminosity functions of quasars and galaxies
  • (Fan et al 2004)
  • (Iwata et al 2005)

53
Extremely red objects explained?
  • Using GOODSIRAC observations of the UDF
  • Old population mixed with younger one at redshift
    2.9
  • (Yan et al 2004)

54
(No Transcript)
55
but still
  • z6.5 galaxy
  • or dusty z3 object?
  • (Mobasher et al 2004)

56
Double populations at z6 too
  • gt1010 Msun galaxies observed at z6
  • zform 7 20
  • Consistent with solar metallicity and low dust
    content
  • (Yan et al 2005)

57
Distant red galaxies
  • 153 galaxies in GOODS field, 1ltzlt3.5
  • 10 pure old
  • 40 mixed
  • 50 dusty
  • (Papovich et al 2006)

58
and HEROes
(Maihara et al 2001)
  • Observed in the Subaru Deep Field
  • Not passive Ellipticals
  • z10 LBGs?
  • Possibly dusty
  • z2.5 starbursts (protoellipticals?)
  • (Totani et al 2001)
  • But not SCUBA sources
  • (Coppin et al 2004)

59
HDF-S objects (Yahata et al 2000)
Selection of very red objects in the HDF-S Most
undetected in WFPC2 UBVI images, detected in
NICMOS JHK reaching AB26
60
HDFS objects (Yahata et al 2000)
  • Redshift estimates reach to
  • z 15, if (JHK) colours are
  • takenface value as Ly-break

61
Bouwens search in HST deeps
  • No good z10 candidates have been found in a
    search of (J-H) red objects
  • (or J-dropouts) in all available deep NIR HST
    images
  • (Bouwens et al 2005)

62
Quasar Density at z6
  • Based on nine zgt5.7 quasars
  • Density declines by a factor of 20 from z3
  • Emergence of earliest supermassive BHs
  • Cosmological implication
  • MBH109-10 Msun
  • Mhalo 1013 Msun
  • How to form such massive galaxies and BHs in
    less than 1Gyr??
  • The rarest and most biased systems at early times
  • The initial assembly of the system must start at
    zgtgt10
  • ? co-formation and co-evolution of the earliest
    SBH and galaxies

(Fan et al. 2004)
63
The Star Formation Rate
  • or why I do not really like this quantity

64
Measurements of the SFD (1)
  • Madau et al. 1996
  • (MNRAS, 283, 1388)

65
Measurements of the SFD (2)
  • Connolly et al. 1997
  • (ApJ, 486, L11)

66
Measurements of the SFD (3)
  • Pascarelle et al. 1998
  • (ApJ, 508, L1)

67
Measurements of the SFD (4)
  • Barger et al. 2000
  • (AJ, 119, 2092)

68
Measurements of the SFD (5)
  • Lanzetta et al. 2002
  • (ApJ, 570, 492)

69
Measurements of the SFD (6)
  • Rowan-Robinson 2003
  • (MNRAS, 345, 819)

70
Measurements of the SFD (7)
  • Appenzeller et al. 2004
  • Msgr, 116, 18

71
Measurements of the SFD (8)
  • Bouwens et al. 2005
  • ApJ, 624, L5

72
Measurements of the SFD (9)
  • Taniguchi et al. 2005
  • PASJ 57, 165

73
(little) Conclusions about the SFR
  • Perhaps many effects are not well understood
    yet
  • Dust effect, distribution and abundance
  • Calibration of different estimators
  • Selection effects on emitters
  • Observational effects (dimming?)

74
Gunn-Peterson troughs at zgt6 ?
75
Strong Evolution ofGunn-Peterson Optical Depth
Transition at z6?
(Fan et al. 2003)
76
But(Songaila 2004)
  • a measurement of the Lya optical depth in a
    large sample of QSOs does not show any
    discontinuity in the highest-redshift QSOs

77
Are we really reaching out to the reionisation
epoch?
  • Latest SDSS QSO data point towards that
  • BUT for WMAP, and
  • Reionisation is a patchy process
  • Possible inhomogeneity (Miralda-Escude et al
    2000)
  • Proximity effect of QSOs over environment
  • They reside inside large overdensities
  • Infall processes plus redshift
  • Ionisation effect (Barkana Loeb 2003)
  • and WHO is doing the reionisation?

78
(Razoumov et al 2002)
  • Numerical simulations of the reionisation epoch

79
Could we see behind zreion?
  • Loeb, Barkana, Hernquist (2005)
  • To observe an object behind reionisation it
    needs
  • either large-scale ionising sources around it, or
  • large numbers of massive (gt100 Msun) stars in it
  • in order to ionise a sphere around the object
    and permit Lya photons to escape absorption

80
Quasars are boring
The Lack of Evolution in Quasar Intrinsic
Spectral Properties

Ly a
NV
OI
Ly a forest
SiIV
81
so boring
  • No metallicity evolution detected out to z6
  • (Maiolino et al 2004)

82
Chemical Enrichment at zgtgt6?
  • Strong metal emission ? consistent with
    supersolar metallicity
  • NV emission ? multiple generation of star
    formation
  • Fe II emission ? might be from metal-free Pop III

(Barth et al. 2003)
(Fan et al. 2001)
83
First generation of stars
  • (Madau, Ferrara, Rees 2001)
  • A first generation of pre-galactic SN could
  • enrich medium (approx 20 filling factor) to
  • the metallicity level seen in the Lya forest at
  • z 3 without perturbing galaxy formation

84
A Double Reionization?(Cen 2003)
  • The universe reionised first at z 16 via Pop
    III stars, and then became neutral again when
    those disappeared
  • The universe reionised again at z 6 when AGNs
    became important and galaxies formed normal
    stars
  • Furlanetto Loeb (2005) Extended period more
    physically plausible than double-peaked history

85
GRBs, the new probe
86
GRB050505 _at_ z 5.3
  • (Jakobsson et al 2006)

87
GRB050904 6.3
(Tagliaferri et al 2005)
(Kawai et al 2006)
88
GRB030329 sn2003dh (Ic)(Stanek et al 2003)
89
First Hi-res spectra VLTUVES
  • MgII systems _at_ z1.4
  • en GRB021004
  • (z2.328)
  • MgII systems _at_ z1.25
  • en GRB020813
  • (z1.255)
  • (Fiore et al 2005)

90
GRB Echelle spectroscopy _at_ z 4
  • DLA detected at GRB host redshift, similar to
    other known z4 DLAs
  • Low metallicity,
  • low dust content,
  • very high N(HI)
  • (Chen et al 2005)

91
GRB050505 _at_ z4.275
  • (Berger et al 2006)

92
Probing a different medium
93
  • GRB DLAs probe higher metallicity environments
    than regular QSO DLAs
  • Linked to higher N(HI) or environment dependent?

94
Let me finish with a twist
95
Measurements of UV luminosity and slope
96
Galaxy evolution in a different plot
97
So
  • Many probes of the high-z universe agree
  • Star formation histories (?)
  • Metallicity evolution
  • Evolution of the gas content
  • Galaxy formation and evolution
  • But
  • The scatter is too large in many of them
  • Time for forming BHs, GRBs, and galaxies is
    running short
  • The link between WMAP and the optical is not
    clear

98
Conclusions
  • Its the beginning of a great adventure
  • and, indeed we live interesting times
Write a Comment
User Comments (0)
About PowerShow.com