The ALICE Transition Radiation Detector Design and Performance - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

The ALICE Transition Radiation Detector Design and Performance

Description:

The ALICE Transition Radiation Detector Design and Performance Johannes P. Wessels, Universit t M nster for the ALICE TRD Collaboration detector principle and overview – PowerPoint PPT presentation

Number of Views:185
Avg rating:3.0/5.0
Slides: 26
Provided by: unim65
Category:

less

Transcript and Presenter's Notes

Title: The ALICE Transition Radiation Detector Design and Performance


1
The ALICE Transition Radiation Detector Design
and Performance
Johannes P. Wessels, Universität Münster for the
ALICE TRD Collaboration
  • detector principle and overview
  • results from testbeam measurements
  • dE/dx
  • transition radiation
  • electron/pion separation
  • position and angular resolution
  • performance of electronics
  • status of the project

IEEE Nuclear Science Symposium, Rome, Oct. 16-22,
2004
2
(No Transcript)
3
Transition Radiation Detector (TRD)
  • Purpose
  • electron ID in central barrel pgt1 GeV/c
  • fast trigger for high pt particles
  • Parameters
  • 540 modules -gt 760m2
  • length 7m
  • anticipated X/X0 15
  • 28 m3 Xe/CO2 (8515)
  • 1.2 million channels
  • 17 million pixels
  • 15 TB/s on-detector bandwidth
  • weight 21 t
  • total power 60kW

4
Principle of Operation
7 mm
31 mm
48 mm
  • two purposes PID momentum measurement

5
Radiator
  • polypropylene fibers (17 ?m)
  • CF-backed ROHACELL foam
  • irregular sandwich radiator
  • parameterized for simulations

6
Full Size Radiator
size 1200x1600 mm2 deformation at
center 1 mm _at_ 1 mbar
7
(No Transcript)
8
Mounting of Electronics
9
Radiator Comparison
  • method likelihood on total charge averaged over
    4 detectors
  • extrapolated to six layers
  • pion rejection of 100 achieved over large
    momentum range
  • little dependence on actual radiator producer

10
(No Transcript)
11
(No Transcript)
12
?-Rejection vs. incident angle
  • slight deterioration of pion rejection at small
    angles (0o-2o)
  • not frequent in ALICE
  • space charge effects diminish signal
  • not included in simulations
  • low gas gain preferable

13
Resolution vs. Incident Angle
  • quantitative understanding of all resolution
    effects
  • significant improvement in position resolution
    with tail merging and tail cancellation
  • position resolution better than 300 ?m
  • angular resolution better than 0.8o

14
Resolution vs. Signal-to-Noise
  • resolution better for pions at given S/N ratio
  • average signal larger for electrons
  • comparable resolution for electrons and pions
  • angular resolution smaller for electrons with
    radiator -gt L-shell fluorescence

15
TRD electronics chain
PASA
TRAP - digital chip
40mm
16
Preamp Shaper (PASA)
  • 18 4th order preamplifier/shapers with
    differential outputs (21) 12 mV/fC, 13 mW/channel
  • digital test structure for chip verification
  • size of chip 3030 µm x 7280 µm
  • full production received thinned to 300 µm

17
PASA test results
crosstalk as function of inter-pad capacitance
gain 12.2mV/fC dynamic range 0.15fC..165fC shapi
ng time 40ns FWHM 120ns differential output
-1..1V noise at 25pF 702e noise slope
21e/pF integral non-linearity lt0.16 power
consumption 13 mW/channel
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
TRD Stack Preparation
  • test of 6 chambers at CERN this week
  • e/? - beam up to 10 GeV/c

22
(No Transcript)
23
Summary
  • pion rejection and tracking capability fulfill
    specs
  • quantitative understanding of
  • dE/dx, position and angular resolution
  • TR production absorption
  • promising results of PASA and digital ASIC
    evaluation
  • good trigger capability for high pt charged
    particles
  • starting series production now
  • aim to be ready for first events in 2007
  • physics performance report
  • http//alice.web.cern.ch/ALICE/ppr

24
ALICE TRD Collaboration
  • C. Adler, A. Andronic, V. Angelov, H.
    Appelshäuser, C. Baumann, T. Blank, C. Blume, P.
    Braun-Munzinger, D. Bucher, O. Busch,
    V. Catanescu, V. Chepurnov, S. Chernenko, M.
    Ciobanu, H. Daues, D. Emschermann, O.
    Fateev, S. Freuen, P. Foka, C. Garabatos, H.
    Gemmeke, R. Glasow, H. Gottschlag, T. Gunji, M.
    Gutfleisch, H. Hamagaki, N. Heine, N. Herrmann,
    M. Inuzuka, E. Kislov, V. Lindenstruth, C.
    Lippmann, W. Ludolphs, T. Mahmoud, A. Marin, J.
    Mercado, D. Miskowiec, Y. Panebratsev, V.
    Petracek, M. Petrovici, C. Reichling, K.
    Reygers, A. Sandoval, R. Santo, R. Schicker, R.
    Schneider, S. Sedykh, R.S. Simon, L. Smykov, J.
    Stachel, H. Stelzer, H. Tilsner, G. Tsiledakis,
    I. Rusanov, W. Verhoeven, B. Vulpescu, J.W., B.
    Windelband, C. Xu, V. Yurevich, Y. Zanevsky, O.
    Zaudtke
  • Physikalisches Institut, Universität
    Heidelberg, Germany
  • GSI, Darmstadt, Germany
  • Kirchhoff Institut, Universität Heidelberg,
    Germany
  • FZ Karlsruhe, Germany
  • Universität Frankfurt, Germany
  • Universität Münster, Germany
  • NIPNE, Bucharest, Romania
  • JINR, Dubna, Russia
  • University of Tokyo, Japan

25
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com