ECE637 : Fundamentals of Wireless Communications - PowerPoint PPT Presentation

1 / 21
About This Presentation
Title:

ECE637 : Fundamentals of Wireless Communications

Description:

OFDM Aliazam Abbasfar * N ... and space Diversity MIMO OFDM Synchronization issues Timing acquisition and Coarse frequency offset estimation Pilot symbols Timing ... – PowerPoint PPT presentation

Number of Views:181
Avg rating:3.0/5.0
Slides: 22
Provided by: Present189
Category:

less

Transcript and Presenter's Notes

Title: ECE637 : Fundamentals of Wireless Communications


1
ECE637 Fundamentals of Wireless Communications
  • Lecture 13,14,15,16
  • Multi-carrier Modulation
  • OFDM
  • Aliazam Abbasfar

2
Outline
  • Multi-carrier Modulation
  • Digital Multi-tone (DMT)/OFDM

3
Multi-carrier Modulation
  • Used in wideband systems
  • Frequency selective fading
  • B gtgt Wc
  • Divide data stream into N sub stream, each
  • transmitted over a sub-channel with BNB/N
    bandwidth
  • If N is big enough
  • Narrowband/flat fading modulation
  • BN lt Wc
  • TN (sub-channels) gtgt Tm (delay spread)
  • FDM system
  • Multiple carrier frequencies
  • Guard bands
  • Spectrally inefficient
  • Roll-off factor
  • Time-limited pulses

4
Orthogonal sub-channels
  • Sinusoids with different frequencies (in a period
    of T)
  • Df n/T
  • N complex sinusoids
  • Multiple Sinc functions in spectrum
  • Overlapping spectrums
  • Sub-channels are not band-limited
  • Bigger guard band
  • Time and frequency offset problems
  • Early HF modems (1970)
  • OFDM/DMT foundation

5
Band-limited sub-channels
  • Orthonormal sets
  • ISI free Nyquist functions
  • Root raised cosine functions
  • If g(t) is a Nyquist function,
  • g(t-kT)k is an orthonormal set
  • g(t-kT) cos(wct)k
  • g(t-kT) cos(witfi)k,i
  • ISI and ICI free
  • QAM modulation possible
  • Staggered I and Q
  • Sensitive to delay and phase
  • Spectrally efficient

6
Digital Multi-Tone (DMT)Orthogonal Frequency
Division Multiplexing (OFDM)
  • Send N symbols dn over N orthogonal sinusoids
    in a period of TN
  • OFDM symbol
  • dn can be complex symbols
  • x(t) is baseband signal
  • x(k/N TN) is IDFT of dn
  • Transmitted signal

7
Cyclic prefix
  • Discrete channel response h0, h1, ,
    hL-1
  • Extended TX signal samples xN-LN-1,
    x0N-1
  • xN-L, , xN-1 is cyclic prefix
  • Cyclic prefix changes linear convolution to
    circular convolution
  • y(t) h(t) ? x(t) ? yn hn ? xn
    n0, , N-1
  • DFTyn DFThn . DFTxn Hn . dn
  • The first L-1 samples of y(t) are discarded
  • Eliminates ISI form previous OFDM symbol
  • Cyclic prefix is a guard time between OFDM
    symbols
  • CP overhead L

8
Zero prefix
  • Sends nothing (zero) instead of cyclic prefix
  • No ISI
  • Less transmitted power
  • Add the received tail of each symbol to its
    beginning to make circular convolution work
  • Additional noise (NL)/N 1 L/N

9
OFDM in matrix form
  • y H W d n
  • H is convolution matrix
  • With cyclic prefix yN Hc W d n
  • Hc is circulant matrix Hc W L WH

10
Frequency equalization
  • yN Hc (Wd) n W L d n
  • Frequency domain equalization
  • Y WH yN L d WH n
  • L-1 WH Y d L-1 WH n
  • Noise enhancement
  • Pre-coding
  • yN Hc (W L-1 d) n Wd n
  • WH Y d WH n
  • Channel response needed in the TX
  • Power allocation and bit loading needed

11
OFDM system block diagram
  • Transmitter
  • Receiver

12
OFDM performance
  • Independent sub-channels
  • Pi signal power in ith sub-channel
  • Ni0 noise power in ith sub-channel
  • dmin is a function of Pi and the constellation
  • in ith sub-channel
  • (dmin/2)2 3 Pi /(M2-1) (M-ary PAM)

13
Power allocation
  • Power allocation to sub-channels
  • Maximize capacity subject to power constraint
  • Lagrangian technique
  • Water filling
  • Bit loading
  • Power and data rate allocation
  • Adaptive in fading channels
  • Commonly used in ADSL

14
Channel estimation
  • Channel estimate when data is known
  • Using preamble
  • Frequency domain
  • WH y L WH x n
  • Time domain
  • y X h n
  • h (XHX)-1 XH y
  • Time and Frequency domain
  • Tracking
  • Pilot tones
  • Time and
  • Frequency interpolation

15
OFDM in fading channels
  • Flat fading for sub-channels
  • Coding in time, frequency, and space
  • Diversity
  • MIMO OFDM

16
Synchronization issues
  • Timing acquisition and Coarse frequency offset
    estimation
  • Pilot symbols
  • Timing offset
  • timing synchronization errors
  • Data rotation
  • Carrier phase offset
  • Data rotation
  • Carrier frequency offset
  • mismatched oscillators, Doppler frequency shifts
  • Causes attenuation and ICI

17
Windowing
  • Mitigates frequency offset problem
  • Raised cosine
  • Gaussian
  • Done after cyclic extension
  • Power spectrum

18
Peak to average power ratio
  • Linear operation is needed for
  • OFDM symbols
  • Average power N Ps N A2
  • Assume the same power
  • for sub-channels (Ps A2)
  • Peak power (NA)2
  • PAPR N
  • Limiting when N is large
  • Large back-off in power amps (PA)
  • PAPR distribution

19
PAPR reduction
  • Clipping
  • distortion (increase Pe)
  • Spectral regrowth
  • Symbol selection
  • Peak cancellation
  • Coding

20
Case study 802.11a/11g
  • Wireless LAN
  • Band 5 GHz (11g operates in 2.4 GHz)
  • B 20 MHz
  • N 64
  • 48 used for data
  • 12 outer tones not used
  • 4 used as pilot tones
  • BN 20 MHz/64 312.5 KHz
  • CP 16 samples (16/20 0.8 usec)
  • Delay spread lt 0.8 usec
  • OFDM symbols 80 samples (80/20 4 usec)
  • CP overhead 20
  • The same modulation and coding for all
    sub-carriers
  • Modulations BPSK, QPSK, 16QAM, and 64 QAM
  • Convolutional code Rates ½, 2/3, and ¾

21
Reading
  • Ch. 12 Goldsmith
  • Ch. 1, 2 Bahai
Write a Comment
User Comments (0)
About PowerShow.com