Title: Fast Intra- and Intermodal Deformable Registration Based on Local Subvolume Matching
1Fast Intra- and Intermodal Deformable
Registration Based on Local Subvolume Matching
- Matthias Söhn1, Verena Scheel2, Markus Alber1
- (1) Radiooncological Clinic, Section for
Biomedical Physics, University of Tübingen,
Germany - (2) Laboratory for Preclinical Imaging and
Imaging Technology, Department of Radiology,
University of Tübingen, Germany
Forschungszentrum für Hochpräzisionsbetrahlung
2Deformable Registration for Radiotherapy
- Requirements Challenges
- accuracy
- fast
- no or little user interaction
- versatility
3Algorithmic Implementation
Cover region of interest in reference image with
regular 3D-grid of featurelets
typical size 1.5x1.5x1.5 cm
4- Individual rigid registration of each featurelet
reference image (exhale)
target image (inhale)
for each featurelet
maximization of local normalized mutual
information (NMI) allowing 3D-shifts within local
search region
? fast parallelizable!
5- Individual rigid registration of each featurelet
reference image (exhale)
target image (inhale)
for each featurelet
maximization of local normalized mutual
information (NMI) allowing 3D-shifts within local
search region
? fast parallelizable!
6- Automatic assessment of local registration quality
7- Automatic assessment of local registration
quality -- Result
8- Relaxation Step Iterative Minimization of
Deformation Energy for mismatched Featurelets
9- B-Spline Interpolation of Featurelet shift vectors
target image, final featurelet positions
10Results
- RCCT Inhale-Exhale deformable registration
Visual evaluation
before
after registration
11Results
- CT-ConeBeamCT deformable registration Visual
evaluation
before
after registration
Elekta XVI ConeBeam-CT data, courtesy D. Yan, Y.
Chi (Beaumont)
12Results
- CT-MRI deformable registration Visual evaluation
CT
MRI
MRI (backtransformed)
before
after registration
13Results
- Quantitative evaluation Anatomical landmarks
N55 landmarks altogether
N 3D-residuals mm 3D-residuals mm
N before registration after registration
pat. 1 15 8.24.6 1.30.9
pat. 2 11 4.21.5 1.51.0
pat. 3 14 10.45.5 1.80.7
pat. 4 15 7.85.7 1.81.3
avg. avg. 7.85.1 (max. 21.3) 1.61.0 (max. 4.6)
marked in inhale and exhale CTs of 4 patients
Siemens Somatom Sensation Open RCCT datasets _at_
1x1x3mm voxelsize
14Results
- Quantitative evaluation Virtual phantom
Virtual thorax phantom known deformation field
used to to deform real lung CT dataset
courtesy D. Yan, Y. Chi (Beaumont Hospital)
15Results
- Computational performance
test case registered region voxels calculation time (dual-core Xeon PC, 2x2.66GHz)
Thorax (CT-CT) 360x270x120 2min 12sec
HN (CT-CBCT) 225x225x115 49sec
HN (CT-MRI) 378x210x70 1min 23sec
- calculation time mainly depends on
- size of registered region
- size of local search region
- featurelet size
16Results
- Computational performance
test case registered region voxels calculation time (dual-quadcore Xeon PC, 8x2.66GHz)
Thorax (CT-CT) 360x270x120 38sec
HN (CT-CBCT) 225x225x115 14sec
HN (CT-MRI) 378x210x70 19sec
online deformable registration!
17Conclusions
- Featurelet-based deformable registration
- fast, parallizable
- model-independent, fully automatic
- enables multi-modality registration due to use
of mutual information - sub-voxel registration accuracyas shown by
landmark-based evaluation and virtual thorax
phantom
online multi-modality deformable registration
within reach!