Nuclear Magnetic Resonance - PowerPoint PPT Presentation

1 / 41
About This Presentation
Title:

Nuclear Magnetic Resonance

Description:

Nuclear Magnetic Resonance. Yale Chemistry 800 MHz ... 1H = 2.67x104 rad sec-1 gauss-1. Thus: = /2 (Bo) For a proton, if Bo = 14,092 gauss (1.41 tesla, 1.41 T) ... – PowerPoint PPT presentation

Number of Views:71
Avg rating:3.0/5.0
Slides: 42
Provided by: yalest
Category:

less

Transcript and Presenter's Notes

Title: Nuclear Magnetic Resonance


1
Nuclear Magnetic Resonance
Yale Chemistry 800 MHz Supercooled Magnet
2
(No Transcript)
3
The Precessing Nucleus
4
The Precessing Nucleus Again
The Continuous Wave Spectrometer
The Fourier Transform Spectrometer
5
Observable Nuclei
  • Odd At. Wt. s 1/2
  • Nuclei 1H1 13C6 15N7 19F9
    31P15 .
  • Abundance () 99.98 1.1 0.385 100
    100
  • Odd At. No. s 1
  • Nuclei 2H1 14N7
  • Unobserved Nuclei
  • 12C6 16O8 32S16

6
  • Thus ?? ?/2?(Bo)
  • For a proton,
  • if Bo 14,092 gauss (1.41 tesla, 1.41 T),
  • ?? 60x106 cycles/sec 60 MHz
  • and
  • ?EN Nh?? 0.006 cal/mole

7
Rf Field vs. Magnetic Field for a Proton
8
Rf Field /Magnetic Field for Some Nuclei
9
Fortunately, all protons are not created equally!
? (?obs - ?TMS)/?inst(MHz) (240.00 - 0)/60
4.00
10
Where Nuclei Resonate at 11.74T
11
Chemical Shifts of Protons
12
The Effect of Electronegativity on Proton
Chemical Shifts
13
Chemical Shifts and Integrals
14
Spin-Spin Splitting
anticipated spectrum
15
Spin-Spin Splitting
observed spectrum
J is a constant and independent of field
16
Spin-Spin Splitting
  • 4.4
  • J 1.5 Hz

? 6.4 J 1.5 Hz
This spectrum is not recorded at 6 MHz!
??and J are not to scale.
17
Multiplicity of Spin-Spin Splitting for s 1/2
multiplicity (m) 2?s 1
18
1H NMR of Ethyl Bromide (90 MHz)
CH3CH2Br
for H spins ???????? ????????????????? ???
??????????????? ????????????????????????????
for H spins ????????? ?????????? ??????????????
19
1H NMR of Isopropanol (90 MHz)
(CH3)2CHOH
1H septuplet no coupling to OH
(4.25-3.80)x90/6 7.5 Hz
20
Proton Exchange of Isopropanol (90 MHz)
(CH3)2CHOH
21
Diastereotopic Protons 2-Bromobutane
22
Diastereotopic Protons 2-Bromobutane at 90MHz
23
1H NMR of Propionaldehyde 300 MHz
No!
24
1H NMR of Propionaldehyde 300 MHz
d9.79 (1H, t, J 1.4 Hz)
d1.13 (3H, t, J 7.3 Hz)
25
1H NMR of Ethyl Vinyl Ether 300 MHz
26
ABX Coupling in Ethyl Vinyl Ether
d3.96 (1H, dd, J 6.9, 1.9 Hz)
d4.17 (1H, dd, J 14.4, 1.9 Hz)
d6.46 (1H, dd, J 14.4, 6.9 Hz)
Another example
27
Dependence of J on the Dihedral Angle The
Karplus Equation
28
1H NMR (400 MHz) cis-4-t-Butylcyclohexanol
He ?4.03, J(Ha) 3.0 Hz J(He)
2.7 Hz
29
1H NMR (400 MHz) trans-4-t-Butylcyclohexanol
30
Peak Shape as a Function of ?? vs. J
31
Magnetic Anisotropy
32
Magnetic Anisotropy
Bo
33
13C Nuclear Magnetic Resonance
13C Chemical Shifts
34
(No Transcript)
35
One carbon in 3 molecules of squalene is 13C
What are the odds that two 13C are bonded to one
another?
10,000 to 1
36
13C NMR Spectrum of Ethyl Bromide at 62.8 MHz
37
13C NMR Spectrum of Ethyl Bromide at 62.8 MHz
Off resonance decoupling of the 1H region removes
small C-H coupling.
C1
C2
Broadband decoupling removes all C-H coupling.
30
0
10
20
ppm (?)
26.6
18.3
38
13C Spectrum of Methyl Salicylate (Broadband
Decoupled)
39
13C Spectrum of Methyl p-Hydroxybenzoate (Broadban
d Decoupled)
40
The 13C Spectrum of Camphor
41
The End
F. E. Ziegler, 2004
Write a Comment
User Comments (0)
About PowerShow.com