Color2Gray - PowerPoint PPT Presentation

1 / 28
About This Presentation
Title:

Color2Gray

Description:

Imanol G mez Rubio Computational Photography TU Berlin. 1. ... Impressionist Sunrise' by Claude Monet. 1. Int: ... Rasche, K., Geist, R., and ... – PowerPoint PPT presentation

Number of Views:90
Avg rating:3.0/5.0
Slides: 29
Provided by: Ima68
Category:
Tags: color2gray | geist

less

Transcript and Presenter's Notes

Title: Color2Gray


1
Color2Gray
  • Imanol Gómez Rubio
  • Computational Photography 11/Dec/2007
  • TU-Berlin

2
Index
  • 1. Introduction
  • 2. Converting to Grayscale
  • 3. Color2Gray
  • 3.1 Challenges
  • 3.2 Algorithm
  • 4. Future Work
  • 5. Examples
  • 6. references

Imanol Gómez Rubio Computational Photography
TU Berlin
3
1. Introduction
Impressionist Sunrise by Claude Monet
Imanol Gómez Rubio Computational Photography
TU Berlin
4
1. Int Isoluminant Colors
Color
Grayscale
Imanol Gómez Rubio Computational Photography
TU Berlin
5
1. Int Featureless Conversion
Color
Grayscale
Color2Gray
Imanol Gómez Rubio Computational Photography
TU Berlin
6
2. Converting to Grayscale
  • In Color Space
  • Linear
  • Nonlinear
  • In Image Space
  • Pixels (RGB)
  • Using colors in the image
  • Different gray for different color
  • Relative difference
  • Using colors in the image and their position in
    image space
  • Colors can map to same gray..

Imanol Gómez Rubio Computational Photography
TU Berlin
7
2. Conv In ColorSpace
Color
Non linear mapping
Simple linear mapping
Imanol Gómez Rubio Computational Photography
TU Berlin
8
2. Conv Related Work
  • Previous Methods from Color2gray
  • Based on changing to CIE Lab

Imanol Gómez Rubio Computational Photography
TU Berlin
9
2. Conv Iluminance channels
Problem can not be solved by simply switching
to a different space
CIE CAM 97
Photoshop LAB
CIE XYZ
YCrCb
Imanol Gómez Rubio Computational Photography
TU Berlin
10
3. Color2Gray
  • This Method attempts to preserve the salient
    features of the color image and the relative
    differences.
  • Human Perception

Imanol Gómez Rubio Computational Photography
TU Berlin
11
3.1 Challenges 1
  • Influence of Neighboring pixels

Imanol Gómez Rubio Computational Photography
TU Berlin
12
3.1 Challenges 2
  • Dimension and size reduction

120, 120
100
0
-120, -120
Imanol Gómez Rubio Computational Photography
TU Berlin
13
3.1 Challenges 3
  • Many Color2Gray Solutions

Original
. . .
Imanol Gómez Rubio Computational Photography
TU Berlin
14
3.2 Algorithm Overview
  • Convert to Perceptually Uniform Space
  • CIE Lab
  • Initialize image, g, with L channel
  • For every pixel
  • Compute Luminance distance
  • Compute Chrominance distance
  • Adjust g to incorporate both luminance and
    chrominance differences

?ij
Imanol Gómez Rubio Computational Photography
TU Berlin
15
3.2 Algorithm Parameters
Radius of neighboring pixels
????
????
Max chrominance offset
????
Map chromatic difference to increases or
decreases in luminance values
Imanol Gómez Rubio Computational Photography
TU Berlin
16
3.2 Algorithm ?
Color
? 9
Full Neighborhood
Imanol Gómez Rubio Computational Photography
TU Berlin
17
3.2 Algorithm ?
?? 5
?? 15
?? 25
?? 35
?? 45
?? 55
?? 65
?? 75
?? 85
?? 95
Imanol Gómez Rubio Computational Photography
TU Berlin
18
3.2 Algorithm ?
Imanol Gómez Rubio Computational Photography
TU Berlin
19
3.2 Algorithm combining Chrominance and Luminance
(Luminance)
?Lij
if ?Lij gt ?Cij
?ij??
?Cij
(Chrominance)?
Imanol Gómez Rubio Computational Photography
TU Berlin
20
3.2 Algorithm combining Chrominance and Luminance
?Lij
if ?Lij gt crunch(?Cij)?
??????ij??
crunch(?Cij)?
Imanol Gómez Rubio Computational Photography
TU Berlin
21
3.2 Algorithm combining Chrominance and Luminance
?Lij
if ?Lij gt crunch(?Cij)?
??????ij??
if ?Cij . ?? 0
crunch(?Cij)?
otherwise
crunch(-?Cij)?
v? (cos ?, sin ?)?
Imanol Gómez Rubio Computational Photography
TU Berlin
22
3.2 Algorithm Optimization
  • min ? ? ( (gi - gj) - ?i,j ??

i?
ji-?
i
Imanol Gómez Rubio Computational Photography
TU Berlin
23
4. Future Work
  • Faster
  • Multiscale
  • Smarter
  • Remove need to specify ?
  • New optimization function designed to match both
    signed and unsigned difference terms
  • Image complexity measures
  • Animations/Video

Imanol Gómez Rubio Computational Photography
TU Berlin
24
5. Examples
Color
Photoshop
Color2gray
Imanol Gómez Rubio Computational Photography
TU Berlin
25
5. Examples
Color
Color2gray
Photoshop
Imanol Gómez Rubio Computational Photography
TU Berlin
26
5. Examples
Color
Color2gray
Photoshop
Imanol Gómez Rubio Computational Photography
TU Berlin
27
6. References
  • http//www.color2gray.info
  • Volk, C., 2000. Adobe Photoshop Tip of the Week
    Tutorial.
  • http//www.carlvolk.com/photoshop21.htm.
  • Rasche, K., Geist, R., and Westall, J. 2005.
    Detail preserving reproduction of color images
    for monochromats and dichromats. IEEE Comput.
    Graph. Appl. 25, 3.
  • http//www.google.com
  • http//www.en.wikipedia.org/wiki/Lab_color_space
  • http//scien.stanford.edu/class/psych221/projects/
    98/ciecam/Description.html
  • http//scidok.sulb.uni-saarland.de/volltexte/2007/
    1201/pdf/Dissertation_37_Mant_Rafa_2006.pdf
  • And several more pages talking about this topic

Imanol Gómez Rubio Computational Photography
TU Berlin
28
THANK YOU
Color
THANK YOU
Color2Gray
Imanol Gómez Rubio Computational Photography
TU Berlin
Write a Comment
User Comments (0)
About PowerShow.com