Ontologydriven Resolution of Semantic Heterogeneities in GDB Conceptual Schemas - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

Ontologydriven Resolution of Semantic Heterogeneities in GDB Conceptual Schemas

Description:

Architecture to integrate schemas. CSF Canonic Syntactic File ... Homonym. Acronym. Structure. Attributes (relation) Associations (relation) ... – PowerPoint PPT presentation

Number of Views:47
Avg rating:3.0/5.0
Slides: 21
Provided by: guiller3
Category:

less

Transcript and Presenter's Notes

Title: Ontologydriven Resolution of Semantic Heterogeneities in GDB Conceptual Schemas


1
Ontology-driven Resolution of Semantic
Heterogeneities in GDB Conceptual Schemas
  • Guillermo Nudelman Hess
  • Prof. Dr. Cirano Iochpe

2
Introduction
  • Geographic Information Systems (GIS)
    popularization
  • Geographic databases (GDB) project
  • Complex
  • Repeatable

3
Architecture to integrate schemas
CSF Canonic Syntactic File SCSSF Canonic
Syntactic and Semantic File
4
Issues on the semantic integration
  • Heterogeneities to be handled Visser, 1997
  • Naming (explanation)
  • Synonym
  • Homonym
  • Acronym
  • Structure
  • Attributes (relation)
  • Associations (relation)
  • Taxonomy (categorization)
  • Constructors (paradigm)

5
Applying Ontology
  • Search and Update algorithm
  • Semi-automate
  • Associated with similarity matching Cohen, 1998
    techniques.

6
The ontoGeo Ontology
  • Geographic domain
  • Basic cartography
  • Hidrography
  • Relief
  • Vegetation
  • Transport
  • Locality
  • Features
  • Spatial representation
  • Object
  • Field
  • Temporality
  • Classes
  • Attributes
  • Relationships
  • Something on network

7
The ontoGeo Ontology
  • Construction
  • Protégé tool
  • RDF/RDFs language
  • Knowledge model extended ? Synonyms

8
Search and Update Algorithm
  • Semi-automate
  • Associated with similarity matching Cohen, 1998
    techniques
  • Parameters
  • Acceptance threshold
  • Analysis Threshold
  • Confidence ratio (delta value)

9
(No Transcript)
10
Similarity Matching
Levenshtein
Sim(Cc,Co)WN.SimName(Cc,Co)WA.SimEst(Cc,Co) WH.
SimHier(Cc,Co)WR.SimRel(Cc,Co)
WN,WA, WH and WR are the similarity weights for
each component
SimEst(Cc,Co) (?ni1f(Cci,Coi)xWati)/Nat
Wat 1 (Ca/C)
F(Cc, Co) ? levenshtein function applied over
each attribute Wat ? Attributes weight Ca
Number of classes having this attribute C Total
classes Nat ? Number of attributes of the
conceptual schema
11
Similarity Matching
SimHier(Cc,Co) (?(Hier(Cc,Pc).Wt(c,p))/
NHier(Cc,Pc))
Wt(c,p) (E).(d(p)1).(IC(c) IC(p)) E(p)
d(p)
IC(c) -log((?(1/sup(w))).1/N)
Wt(c,p) ? Weight of each IS-A association E
density (classes in the hierarchy) E(p) parent
node density (number of child nodes) d(p) depth
(in the hierarchy) IC Information content
(amount of information) sup(W) number of
parent nodes N Number of nodes in the hierarchy
SimRel(Cc,Co) (?(Rel(Cc,Co))/Rel(Cc))
12
Experiment
  • Geographic ontology with about 170 classes
  • Hidrology subset
  • Parameters
  • Accpetance 0,75 (75)
  • Threshold 0,4 (40)
  • delta 0,1 (10)

13
Experimental results
14
Conclusions
  • Ontology
  • Schema unification
  • Pattern storage.
  • Algorithmic methodology to mediate schema
    integration
  • Similarity Matching
  • Balance of similarities
  • Different schemas ? Different weights.

15
Future work
  • Categorize the different types of conceptual
    schemas
  • Try other similarity matching methodologies for
    each class of schema
  • Balance of the WN, WA, WH and WR parameters,
    depending on the input conceptual schema
  • Add spatial relationships to the algorithm
  • Algorithm optimization.
  • Ontology maintenance

16
Thank you
  • Guillermo Nudelman Hess
  • hess_at_inf.ufrgs.br

?
17
Example
18
Example similarity marching
19
Example similarity matching
  • Lago e arroio
  • SimName 0,17
  • SimAt 0 (arroio does not have attributes)
  • SimHier (10,9)/1 0,9 (only 1 hierarchy)
  • SimRel 0 (no aggregation associations)
  • WN WA WH WR 0,25
  • 0,25(0,17) 0,25(0) 0,25(0) 0,25(0,9) 0,27
  • WN 0,4 WA 0,3 WH 0,3 WR 0
  • 0,4(0,17) 0,3(0) 0(0) 0,3 (0,9) 0,34

20
Example similarity matching
  • Lago e Lago
  • SimName 1
  • SimAt (1(0,5) 0,2(0,75))/3 0,22
  • SimHier (10,9)/1 0,9 (only 1 hierarchy)
  • SimRel 0 (no aggregation associations)
  • WN WA WH WR 0,25
  • 0,25(1) 0,25(0,22) 0,25(0) 0,25(0,9) 0,53
  • WN 0,4 WA 0,3 WH 0,3 WR 0
  • 0,4(1) 0,3(0,22) 0(0) 0,3 (0,9) 0,74
Write a Comment
User Comments (0)
About PowerShow.com