Title: Edge Detection using Mean Shift Smoothing
1Edge Detection using Mean Shift Smoothing
2Introduction
- Edge detection problems
- noise
- problematic images low contrast along edges
- parameter dependant (thresholds)
3Introduction Mean Shift Clustering
- The Clustering Problem
- Given a set of data points xi in a
d-dimensional Euclidean space Rd, assign a label
li to each point xi, based on proximity to high
density regions in the space.
4Introduction Mean Shift ClusteringMathematical
Background
The multivariate kernel density estimate is
defined as
- Using the Epanechnikov kernel
We obtain the Mean Shift Vector
5Introduction Mean Shift ClusteringMathematical
BackgroundThe multivariate kernel density
estimate
Example Data Set xi
6Introduction Mean Shift ClusteringMathematical
Background
- The mean shift iteration, derived from the mean
shift vector M(x)
nk number of points in a sphere of radius h
h window radius
7Mean Shift Smoothing
- Initialize data set
- For each j 1..n
- Initialize k 1 and yk xj.
- Repeat Compute yk1 using the mean shift
iteration k?k1 - until convergence (yk1 yk lt e).
- Assign Ismoothed( xj(1), xj(2) ) yk(3).
8Mean Shift Smoothing
Original Image
h 4
h 8
h 16
9Mean Shift SmoothingThe window radius h
Original Image
h 10
10Mean Shift SmoothingThe window radius h
h 15
h 20
11Mean Shift SmoothingThe window radius h
h 10
Original Image
h 15
h 20
12Edge Detection viaMean Shift Smoothing
- Gradient Amplitude Estimation
Hysteresis Procedure
13Edge Detection via Mean Shift Smoothing
Original Image
No Smoothing
Smoothed - Edges
Original Image
No Smoothing
Smoothed - Edges
14Edge Detection via Mean Shift Smoothing
Original Image
No Smoothing
Smoothed
Smoothed - Edges
15Edge Detection via Mean Shift Smoothing
Original Image
No Smoothing
Smoothed
Smoothed - Edges
16Edge Detection via Mean Shift Smoothing
Original Image
No Smoothing
Smoothed
Smoothed - Edges
17Summary
- Good performance handling Gaussian noise, while
preserving objects edges. - Amplification of edges in some cases.
- Possible improvement different rescaling policy
(though more parameters needed). - Problems
- RUNNING TIME. 300 X 300 pixels image, with h
20 30 minutes on a household PC - Many parameters involved h, T1, T2, e.
- Doesnt always improve edge detection. In some
cases even produces poor results in comparison to
edge detection without the smoothing process.
18References
- 1 D. Comaniciu, P. Meer Distribution Free
Decomposition of Multivariate Data, (Invited),
Pattern Analysis and Applications, Vol. 2,
22-30, 1999 - 2 Lecture Notes from Introduction to
Computational and Biological Vision at - http//www.cs.bgu.ac.il/ben- Shahar/Teaching/
Computational- Vision/LectureNotes.php.
19The End