Edge Detection using Mean Shift Smoothing - PowerPoint PPT Presentation

1 / 19
About This Presentation
Title:

Edge Detection using Mean Shift Smoothing

Description:

problematic images: low contrast along edges. parameter ... Hysteresis Procedure: Edge Detection via Mean Shift Smoothing. Original Image. No Smoothing ... – PowerPoint PPT presentation

Number of Views:255
Avg rating:3.0/5.0
Slides: 20
Provided by: mos683
Category:

less

Transcript and Presenter's Notes

Title: Edge Detection using Mean Shift Smoothing


1
Edge Detection using Mean Shift Smoothing
2
Introduction
  • Edge detection problems
  • noise
  • problematic images low contrast along edges
  • parameter dependant (thresholds)

3
Introduction Mean Shift Clustering
  • The Clustering Problem
  • Given a set of data points xi in a
    d-dimensional Euclidean space Rd, assign a label
    li to each point xi, based on proximity to high
    density regions in the space.

4
Introduction Mean Shift ClusteringMathematical
Background
The multivariate kernel density estimate is
defined as
  • Using the Epanechnikov kernel

We obtain the Mean Shift Vector
5
Introduction Mean Shift ClusteringMathematical
BackgroundThe multivariate kernel density
estimate
Example Data Set xi
6
Introduction Mean Shift ClusteringMathematical
Background
  • The mean shift iteration, derived from the mean
    shift vector M(x)

nk number of points in a sphere of radius h
h window radius
7
Mean Shift Smoothing
  • Initialize data set
  • For each j 1..n
  • Initialize k 1 and yk xj.
  • Repeat Compute yk1 using the mean shift
    iteration k?k1
  • until convergence (yk1 yk lt e).
  • Assign Ismoothed( xj(1), xj(2) ) yk(3).

8
Mean Shift Smoothing
  • The window radius h

Original Image
h 4
h 8
h 16
9
Mean Shift SmoothingThe window radius h
Original Image
h 10
10
Mean Shift SmoothingThe window radius h
h 15
h 20
11
Mean Shift SmoothingThe window radius h
h 10
Original Image
h 15
h 20
12
Edge Detection viaMean Shift Smoothing
  • Gradient Amplitude Estimation

Hysteresis Procedure
13
Edge Detection via Mean Shift Smoothing
Original Image
No Smoothing
Smoothed - Edges
Original Image
No Smoothing
Smoothed - Edges
14
Edge Detection via Mean Shift Smoothing
Original Image
No Smoothing
Smoothed
Smoothed - Edges
15
Edge Detection via Mean Shift Smoothing
Original Image
No Smoothing
Smoothed
Smoothed - Edges
16
Edge Detection via Mean Shift Smoothing
Original Image
No Smoothing
Smoothed
Smoothed - Edges
17
Summary
  • Good performance handling Gaussian noise, while
    preserving objects edges.
  • Amplification of edges in some cases.
  • Possible improvement different rescaling policy
    (though more parameters needed).
  • Problems
  • RUNNING TIME. 300 X 300 pixels image, with h
    20 30 minutes on a household PC
  • Many parameters involved h, T1, T2, e.
  • Doesnt always improve edge detection. In some
    cases even produces poor results in comparison to
    edge detection without the smoothing process.

18
References
  • 1 D. Comaniciu, P. Meer Distribution Free
    Decomposition of Multivariate Data, (Invited),
    Pattern Analysis and Applications, Vol. 2,
    22-30, 1999
  • 2 Lecture Notes from Introduction to
    Computational and Biological Vision at
  • http//www.cs.bgu.ac.il/ben- Shahar/Teaching/
    Computational- Vision/LectureNotes.php.

19
The End
Write a Comment
User Comments (0)
About PowerShow.com