Near Infrared (NIR) Spectroscopy Instrumentation Paul Geladi - PowerPoint PPT Presentation

About This Presentation
Title:

Near Infrared (NIR) Spectroscopy Instrumentation Paul Geladi

Description:

Interferometer. Electrooptical. Monochromator 'Glass filter' not selective. Interference filters ... Interferometer. Electrooptical. Interference filter. Glass ... – PowerPoint PPT presentation

Number of Views:3577
Avg rating:3.0/5.0
Slides: 85
Provided by: Pau1137
Category:

less

Transcript and Presenter's Notes

Title: Near Infrared (NIR) Spectroscopy Instrumentation Paul Geladi


1
Near Infrared (NIR) Spectroscopy
InstrumentationPaul Geladi
2
Paul Geladi
Head of Research NIRCE Chairperson NIR Nord Unit
of Biomass Technology and Chemistry Swedish
University of Agricultural Sciences Umeå Technobot
hnia Vasa paul.geladi _at_ btk.slu.se paul.geladi
_at_ uwasa.fi
3
(No Transcript)
4
Content
  • Spectroscopy?
  • Instrumentation
  • Modes of measurement

5
Content
  • Spectroscopy?
  • Instrumentation
  • Modes of measurement

6
Content
  • Spectroscopy?
  • Energy levels in atoms, molecules, crystals
  • Example IR-NIR calculations
  • Related techniques

7
Content
  • Spectroscopy?
  • Energy levels in atoms,molecules, crystals
  • Example IR-NIR calculations
  • Related techniques

8
Spectroscopy
  • Interaction of radiation and matter
  • Electromagnetic radiation
  • Gases, liquids, solids, mixtures
  • Heterogeneous materials

9
Electromagnetic radiation
Cosmic Gamma Xray UV VIS NIR IR Micro Radio
10
Electromagnetic radiation
  • Cosmic gt 2500 KeV
  • Gamma 10-2500 KeV
  • Xray 0.1-100 KeV
  • Ultraviolet 10-400 nm
  • Visible 400-780 nm
  • Near Infrared 780-2500 nm
  • Infrared 2500-15000 nm
  • Microwave GHz
  • Radio MHz-KHz

11
Why interaction?
  • Photon energy matches some energy level
  • E hn
  • E hc/l
  • Plancks constant ????6.63 10-34

12
Some useful constants
  • qe 1.60217646210-19 As
  • me 9.1093818810-31 Kg
  • c 2.99792458108 m/s
  • h 6.6260687610-34 Js
  • 1 Joule to Electronvolt 6.2415063630940281018

13
Units
  • Joule (energy)
  • Electron volt (KeV)
  • Wavelength (nm, mm, mm)
  • Inverse cm (cm-1)
  • Frequency (GHz,MHz,KHz)

14
Content
  • Spectroscopy?
  • Energy levels in atoms,molecules, crystals
  • Example IR-NIR calculations
  • Related techniques

15
HCl molecule (no true sizes)
electron
Xray
UV,VIS
H
Cl
NIR,IR
UV,VIS
Gamma ray
16
Photon-matter interaction
  • Atomic nucleus gamma ray
  • Inner electron Xray
  • Outer electron, chemical single bond UV
  • Chemical double, triple bond UV,VIS
  • Molecular vibration overtone NIR
  • Molecular vibration IR
  • Molecular rotation Micro

17
E
Quantized energy levels
First excited level
hn
Ground level
18
What can be measured?
  • Emission
  • Absorption
  • Fluorescence

19
E
Emission
First excited level
Thermal
hn????
Ground level
20
E
Absorption
First excited level
Thermal
hn???
Ground level
21
E
Fluorescence
First excited level
hn???
hn out
Ground level
22
Techniques?
  • Gamma spectrometry
  • Instrumental neutron activation analysis
  • Xray spectrometry
  • UV-VIS spectrometry (AES,AAS,ICP...)
  • NIR spectrometry
  • IR spectrometry
  • Raman spectrometry
  • Microwave spectrometry

23
What can be used?
Intensity
Position
Intensity, integral
Width
Energy
24
Special topics
  • Polarization
  • Time resolved spectroscopy

25
Content
  • Spectroscopy?
  • Energy levels in atoms,molecules, crystals
  • Example IR-NIR calculations
  • Related techniques

26
Vibrational spectroscopy
27
Morse curves
  • The Morse curve describes the potential energy V
    of a diatomic molecule as a function of
    interatomic distance x.
  • V De 1-exp(-bx)2

28
De 5 b 0.5
29
  • If the atoms go far apart the bond breaks.
  • It is impossible to press the atoms close
    together. Enormous amounts of energy are needed.

30
De 10 b 0.4
Zero equilibrium distance
31
F Fundamental O1 First overtone O2 Second overtone
Quantum levels discrete
O2
O1
F
32
This was diatomic molecules
  • Polyatomic molecules
  • M3N-6 quantized vibration modes
  • M3N-5 linear molecules (N1)
  • N3 , M3 H2O, H2S, SO2
  • N4 , M6 etc

33
Triatomic molecules
  • G(a,b,c)v1(a1/2) v2(b1/2) v3(c1/2)
  • Energy levels
  • abc0 (0,0,0)
  • a1 bc0 (1,0,0)
  • a2 bc0 (2,0,0)
  • a0 b1 c0 etc (0,1,0)

34
Hot band
Overtone
Combination band
(0,0,2)
Fundamental
(0,2,0)
(0,0,1)
(2,0,0)
(0,1,0)
(1,0,0)
(0,0,0)
Ground level
a
c
b
35
Intensity
  • Some transitions are more probable
  • Gives more intense bands
  • Fundamentals in Gas phase
  • Overtones in liquid,solid
  • Combination bands in liquid, solid

36
Hot bands
  • Only exist because of thermal excitation
  • Boltzmann
  • Ne No exp(-DE/kT)
  • Ne number excited, No number ground
  • k Boltzmann constant 1.380650310-23 J/K
  • DE energy difference

37
Why cm-1?
  • Additive

38
S02
  • wavenumber band
  • 519 v2
  • 606 v1-v2
  • 1151 v1
  • 1361 v3
  • 1871 v2v3
  • 2296 2v1
  • 2499 v1v3

39
Thermal radiation
  • Plancks law
  • W(l) c1l-5exp(c2l-1 T-1)-1
  • T K
  • c1 1.9110-12
  • c2 1.438104
  • ?l mm

40
Radiance
4000 K (Tungsten melts)
3500 K
3000 K
2500 K
2000 K
mm
41
Planck curves
  • More total energy for high temperature
  • More UV for high temperature
  • More flat curve for low temperature

42
Content
  • Spectroscopy?
  • Energy levels in atoms,molecules, crystals
  • Example IR-NIR calculations
  • Related techniques

43
Energy supply
  • Photon
  • Thermal
  • Electron -
  • Proton
  • Ion -

44
Optics
  • Electron optics
  • Ion optics

45
Techniques
  • Electron microscopy
  • Electron spectroscopy
  • Mass spectrometry
  • Ion microscopy

46
Transmission
Mono- chromator
Detector
Readout electronics
Radiation source
Sample cell
47
Transmission
Mono- chromator
I0
It
Detector
Readout electronics
Radiation source
Sample cell
48
Lambert-Beer-Bouguer lawTransmissionAbsorbance
T It / I0 A log10 ( I0 / It) -log10 (It /
I0)
49
Lambert-Beer-Bouguer law
A klC l path length k constant C
concentration
50
Reflection
Mono- chromator
Detector(s)
Readout electronics
Radiation source
Sample cell
51
Reflection
Mono- chromator
Detector(s)
I0
Ir
Readout electronics
Radiation source
Sample cell
52
Lambert-Beer-Bouguer lawReflectionPseudoabsorba
nce
R Ir / I0 A -log10 (Ir / I0)
53
Content
  • Spectroscopy?
  • Instrumentation
  • Modes of measurement

54
What can be changed?
  • Radiation source
  • Monochromator
  • Sample cell
  • Detector

55
Radiation source
  • Tungsten-halogen lamp (Car type)
  • Coated tungsten SiC
  • Laser(s)
  • LEDs
  • LED arrays

56
ln(Energy flux)
3000K
1000K
0.2
1
ln(Wavelength), mm
57
1300
Energy flux
LEDs
1000
1150
1520
Wavelength, ?m
58
What can be changed?
  • Radiation source
  • Monochromator
  • Sample cell
  • Detector

59
Monochromator
  • Glass filter
  • Interference filters
  • Prism
  • Grating
  • Interferometer
  • Electrooptical

60
Monochromator
  • Glass filter not selective
  • Interference filters
  • Prism too primitive, never used
  • Grating
  • Interferometer
  • Electrooptical

61
Interference filter
Low RI coating
Glass
Multiple reflections
High RI coating
62
Tilting interference filter
Low RI coating
Glass
Different pathlengths
High RI coating
63
There are also gradual interference filters
  • Disk with increasing thickness
  • Rotate for new wavelength bands

64
Filter wheel
Filter wheel
Detector(s)
Readout electronics
Radiation source
Sample cell
65
Grating
Pathlength difference
Mirror staircase
66
Grating
Exit slit
Entrance slit
Monochromatic
Polychromatic
Rotate
67
Interferometer
Fixed mirror
Semitransparant mirror (50)
Moving mirror
Sample
Detector
68
Interferometer
Fixed mirror
a
Semitransparant mirror (50)
Moving mirror
b
Wavelengths for which b-a whole cycle
reach detector
Detector (interferogram)
69
Interferometer
Interferogram Fourier transform Spectrum
70
What can be changed?
  • Radiation source
  • Monochromator
  • Sample cell
  • Detector

71
(No Transcript)
72
Content
  • Spectroscopy?
  • Instrumentation
  • Modes of measurement

73
Modes of measurement
  • This is a real strong point of NIR spectroscopy.
    There are many modes of measurement
  • Transmission
  • Diffuse reflection
  • Fiber optic based
  • -Transflection
  • -Interaction

74
Det
Det
Integrating sphere
Det
Mirror
75
Transflectance probe
Fiber bundle
Sapphire mirror
76
Mixed solutions
  • Use tunable laser instead of monochromator (more
    lasers?)
  • Use LEDs in different wavelengths instead of
    monochromator
  • Use array of detectors instead of scanning
    monochromator
  • DIODE ARRAY

77
Grating
Entrance slit
Diode array
Polychromatic
78
Filter wheel instrument with interference filters
79
Interferometric instrument
80
(No Transcript)
81
Process NIR spectrometer based on moving grating
82
Transmision instrument
83
Sample changer for seeds (transmission)
84
Diffuse reflectance instrument (rotating cup)
Write a Comment
User Comments (0)
About PowerShow.com