Title: Davidson College SynthAces
1Davidson College Synth-Aces
Tamar Odle (08), Oscar Hernandez (06), Kristen
DeCelle (06), Andrew Drysdale (07), Matt
Gemberling (06), and Nick Cain (06)
2Overview of Digital Decoder Project
- Long-term goal detect eight different
combinations of 3 chemicals - Use RNA-mediated regulation of protein
production - Designed antiswitches, riboswitches, and external
guide sequences.
3Visualization of Decoder
- Human-readable output for 8 different
combinations - Inputs are detected by aptamers that have on or
off switches
4The Building Blocks
- One of our initial goals was to assemble 4
fluorescent proteins - EYFP, RFP, GFP, and ECFP.
- Measuring kinetics of proteins
- Degradation tags to inhibit the fluorescence of
the proteins - Oddities with I6060 in different strains of E.
coli - Parts still needed
5A Generic Fluorescent Protein
- Constitutive in some strains
- Repressed in some strains
- Inducible with IPTG
- Strongest degradation tag (LVA)
6Building Necessary Parts
7Streamlining Synthetic Biology
- Standardized DNA constructs
- Bio Brick Ends
- Limit the number of preparation steps
- Plug and play process
8Our Plans
- Modular plasmid construction
- Save intermediate constructs
- Three RNA-mediated controls
- Kinetics of proteins /- LVA
9Our Intermediate Constructs
Step 2
Step 3
Step 4
10Inserting RNA Regulator
11Characterization of Parts in Registry
12Characterization of I6060
13Initial Observations
I6060 in
MC4100
DH5a
14Fluorescence Variations
15I6060 in 3 Cell Strains
16Fluorescence of I6060 in 3 Cell Strains
July 26, 2005
October 29-30, 2005
Fluorescence/Absorbance
Time (Hours)
17Why Does Fluorescence Vary?
- Hypothesis 1-Genetic variations between strains.
- Hypothesis 2-Genetic variations between cells.
- Hypothesis 3-Mutation in I6060 plasmid.
- Less protein is energetically favorable for
cell. - Hypothesis 4-Switch is flipped turning on
proteases.
18Engineering mRNA to Self-regulate
19RNA Regulatory Molecules
- RNA regulation provides fast feedback
- Several viable approaches to RNA-mediated
regulation
20The Cis-acting Switches
- E. coli contain diverse array of natural
riboswitches - Our design used MTCT8-4 aptamer (Jenison, 1994)
- Previous E. coli riboswitches (Gallivan, 2004)
- Goals
- minimize aptamer length
- test effects of aptamer position
21General Riboswitch Design
- Lac promoter
- MCT8-4 aptamer
- RBS
- 8 bp spacer
22Forward Riboswitch Construct
ForAptRibo
- Riboswitch ligated to EYFP
23Alternative Riboswitch Configurations
RevAptRibo
3AptRibo
24Riboswitch Activity
Construct ForAptRibo RevAptRibo
3AptRibo I6060 Exp 1 2
25Creating Independent RNAs to Regulate Protein
Production
26Antiswitches
- Adapted to target EYFP (Smolke and Bayer, 2005)
- Regulate yeast protein translation
- Antiswitches tested redesigns not synthesized yet
27First Generation Antiswitchs
- On antiswitch appears to turn on EYFP
- Off antiswitch also appears to turn on EYFP
- Antiswitch targeting RBS not effective
28Second Generation Antiswitchs
- Single plasmids
- Shared promoter
29External Guide Sequences
- Trans-acting RNA
- Off EGS
- On EGS with aptamer?
30EGS Plasmid
31Digital Decoder Device Design
32Digital Decoder Device
Goal Decode combination of three chemicals,
display 0-7 on a digital display
Approach Control display using antiswitches,
responsive to Theophylline Caffeine Malachite
Green
33Digital Decoder Device
34Digital Decoder Device
B
0
0
0
C
A
G
0
0
F
D
0
E
35Digital Decoder Device
B
0
0
0
1
C
A
G
0
0
1
F
D
0
E
36Digital Decoder Device
B
0
2
0
0
1
2
C
A
G
2
0
0
1
2
F
D
0
2
E
37Digital Decoder Device
B
0
2
3
0
0
1
2
C
3
A
G
2
3
0
0
1
2
3
F
D
0
2
3
E
38Digital Decoder Device
B
0
2
3
0
0
1
4
2
C
3
A
4
G
2
3
4
0
0
1
2
3
F
D
4
0
2
3
E
39Digital Decoder Device
B
0
2
3
5
0
0
1
4
2
5
C
3
A
4
G
2
3
4
5
0
0
1
2
3
F
D
4
5
0
2
3
5
E
40Digital Decoder Device
B
0
2
3
5
0
0
1
4
2
5
C
3
6
A
4
G
2
3
4
5
6
0
0
1
2
3
6
F
D
4
5
6
0
2
3
5
6
E
41Digital Decoder Device
B
0
2
3
5
7
0
0
1
4
2
5
C
3
6
A
4
7
G
2
3
4
5
6
0
0
1
2
3
6
F
D
4
5
6
7
0
2
3
5
6
E
42Digital Decoder Device
B
0
2
3
5
7
0
1
2
6
C
0
3
A
4
4
5
7
G
2
3
4
5
6
0
1
- Multiple strains live in each strip of the
decoder - Only one strain will fluoresce at any given
time, and it will illuminate its entire
strip. - A particular strain will only fluoresce when its
corresponding chemical combination is present
- Combinations of on and off antiswitches
required
3
6
F
D
0
4
2
5
6
7
0
2
3
5
6
E
43Digital Decoder Device
B
0
2
3
5
7
0
1
2
6
C
0
3
A
4
4
5
7
G
2
3
4
5
6
0
1
3
6
F
D
0
4
2
5
6
7
0
2
3
5
6
E
44Two different antiswitches
Off antiswitch Suppress expression of EYFP in
the presence of its ligand
On antiswitch Allow expression of EYFP in the
presence of its ligand
45Inside E. coli 6
0 0 0
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
46Inside E. coli 6
0 1 0
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
47Inside E. coli 6
0 1 0
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
48Inside E. coli 6
0 1 0
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
49Inside E. coli 6
0 1 0
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
50Inside E. coli 6
0 1 0
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
51Inside E. coli 6
0 1 0
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
52Inside E. coli 6
0 1 0
Theophylline Caffeine Malachite Green
EYFP coding region
Promoter
Start Codon
53Inside E. coli 6
0 1 0
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
54Inside E. coli 6
1 1 0
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
55Inside E. coli 6
1 1 0
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
56Inside E. coli 6
1 1 0
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
57Inside E. coli 6
1 1 0
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
58Inside E. coli 6
1 1 0
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
59Inside E. coli 6
Theophylline Caffeine Malachite Green
1 1 0
Promoter
EYFP coding region
Start Codon
60Inside E. coli 6
1 1 1
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
61Inside E. coli 6
1 1 1
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
62Inside E. coli 6
1 1 1
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
63Inside E. coli 6
1 1 1
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
64Inside E. coli 6
1 1 1
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
65Inside E. coli 6
1 1 1
Theophylline Caffeine Malachite Green
Promoter
EYFP coding region
Start Codon
66Digital Decoder Device
B
0
2
3
5
7
0
1
2
6
C
0
3
A
4
4
5
7
G
2
3
4
5
6
0
1
3
6
F
D
0
4
2
5
6
7
0
2
3
5
6
E
67Thanks to MIT hosts and iGEM organizers
Funding support from HHMI, NIH via MIT, Duke
Endowment, and Davidson College