Artificial Intelligence - PowerPoint PPT Presentation

About This Presentation
Title:

Artificial Intelligence

Description:

1997: IBM computer Deep Blue beats world champion Garry Kasparov in chess match. ... Kismet - Nomad. What is AI? To have a 'System' do human activities ... – PowerPoint PPT presentation

Number of Views:48
Avg rating:3.0/5.0
Slides: 33
Provided by: chuckcu
Learn more at: http://www.cs.ucf.edu
Category:

less

Transcript and Presenter's Notes

Title: Artificial Intelligence


1
Artificial Intelligence
  • By
  • Chris Suh

2
Overview
  • History of AI
  • What is AI?
  • Topics of AI

3
Background
  • 1950 Alan Turing
  • 1956-8 John McCarthy
  • 1956 Demonstration of the first running AI
  • program at Carnegie Mellon
  • 1964 Danny Bobrow
  • 1965 Joseph Weizenbaum
  • 1979 The 1st computer-controlled vehicle,
  • The Stanford Cart
  • 1983 Danny Hillis

4
Background cont
  • 1990s Major advances in all areas of AI.
  • - Demonstrations in machine learning
  • - Intelligent tutoring
  • - Case-based and uncertain reasoning
  • - Multi-agent planning and scheduling
  • - Vision
  • - Virtual reality and games.

5
Background cont
  • 1997 IBM computer Deep Blue beats world champion
    Garry Kasparov in chess match.
  • 2000 Interactive robot are available
  • - Kismet
  • - Nomad

6
What is AI?
  • To have a System do human activities
  • Most widely spread definition of AI is the so
    called Turing's test
  • Russell and Norvig
  • - Systems that think like humans
  • - Systems that act like humans
  • - Systems that think rationally
  • - Systems that act rationally

7
Turing Test
  • Alan Turing
  • - British mathematician
  • - Famous for invention of Turing machine
  • - Deciphering German codes during WW II
  • Hidden Curtain
  • Solution is indecisive

8
Topics
  • LISP
  • Searching Strategies
  • Knowledge Representation
  • Reasoning
  • Learning
  • WordNet
  • NLP (Natural Language Processing)

9
AI Foundation
  • Linguistics
  • - concerned with NLP
  • Psychology
  • - modeling human thought processes
  • Mathematics
  • - Mechanizing intelligent processes
    (such as theorem proving)

10
LISP (LISt Processing language)
  • Not numeric in nature, more symbolic
  • Languages like FORTRAN are not particularly
    suited to AI work
  • Not compiled, Interpreted
  • Functional to handle recursion and conditional
    expressions
  • 2 data structures
  • - Lists
  • - Atoms

11
LISP cont
  • (one two three four) - a list of 4 atoms
  • one two three four

12
LISP cont
  • (one (two three (four)))
  • one
  • two three
  • four

13
LISP cont
  • Example
  • ADD-FRAME ADD-PROP ADD-IS-A
  • REMOVE-FRAME REMOVE-PROP REMOVE-IS-A
  • IS-A HAS-A
  • PRINT-FRAME PRINT-NET

14
Searching Strategies
  • 4 major categories
  • - Completeness
  • - Time Complexity
  • - Space Complexity
  • - Optimality

15
Searching Strategies examples
  • Breadth first search
  • Depth first search
  • Depth limited search
  • Interative deepening search
  • Bidirectional
  • Best first search
  • A search
  • IDA search

16
Knowledge Representation
  • Formal Representation of Informal Knowledge
  • EX 1 If Peter eats an apple p ,
    then Peter is happy q
  • 2 Peter eats an apple
  • SOL
  • 1 p ? q
  • 2 p Given
  • 3 q

17
Logic
  • Prepositional (Boolean Logic)
  • - Whole Prepositions (or facts) and Boolean
    connectives
  • First Order Logic
  • - Objects and predicates on objects

18
Prepositional (Boolean Logic)example
  • Proof by contradiction
  • 1) S ? (S ? Q) ? Given Q ? Given
  • 2) Q
  • 3) Q
  • 4) S
  • 5) (S ? Q)
  • 6) Q ? S Contradiction
  • 7) Q ? S
  • 8) S

19
First Order Logic
  • Object ? (i.e. John, Mike, Susan)
  • Predicate ? Relationship or Characteristic
  • (i.e. Brother, Human, Tall)
  • Connectives ? (i.e. ? ? ? )

20
First Order Logicexample
  • If Richard is older than 30 and he is working for
    Siemens, then he is underpaid.
  • - Object ? Richard
  • - Predicates ? age, job, underpaid
  • (age (Richard, 30) ? job (Richard, Siemens)
  • ? underpaid (Richard) )

21
Learning
  • Brain vs. Computer
  • - computer cycle time gtgt human brain
  • - brain 400 MHz
  • - brain is more fault tolerant
  • 2 ways of learning
  • - Neural Networks
  • - Transformation Based

22
Natural Language Processing(NLP)
  • Ontologies
  • - a hierarchy which classifies how objects are
    organized and related to each other
  • WordNet is best example of an Ontology
  • WordNet Example

23
Natural Language Processing(NLP) cont
24
Natural Language Processing(NLP) cont
25
Natural Language Processing(NLP) cont
  • Usages
  • 1) Information Retrieval
  • 2) Prepositional Phrase Attachment
  • - I ate a cake with a fork

26
Natural Language Processing(NLP) cont
  • Part Of Speech (POS) Tagging
  • Penn Treebank TagSet (37 Tags)
  • - NN Singular noun - NNS Plural noun
  • - PRP Pronoun - PRP Possessive Pronoun
  • - VB Verb - RB Adverb
  • - JJ Adjective - DT Determinant
  • - TO to,too - PP Prepositional Phrase
  • etc.

27
Part Of Speech (POS) TaggingMethods
  • Brills POS tagging
  • Context Free Expressions
  • Finite State

28
Brills POS taggingexample
  • Transformations based
  • Error-driven learning
  • Untagged text
  • Initial State Truth
  • Tagged Text learner Rules

29
Context Free Expressionsexample
  • S ? NP VP S
  • NP ? det NP2 NP VP
  • NP ? NP2 noun VP PP
  • NP2 ? Noun verb NP prep
    NP
  • NP2 ? NP2 PP I det NP2 det
    Np2
  • NP2 ? Adj NP2
  • PP ? Prep NP ate noun noun
  • VP ? Verb the with
  • VP ? Verb NP cake the fork
  • VP ? VP PP

30
Finite Stateexample
  • END PP
  • NP verb verb
    NP
  • a b c d e
    PP
  • PP
  • verb Jump

31
Conclusion
  • Everything working as one
  • Evolution
  • Will AI eventually supersede humans?
  • ANY QUESTIONS?????

32
Works Cited
  • ai.eecs.umich.edu/cogarch4/toc_defs/defs_theory/de
    fs_ai
  • Norvig, Peter and Russell, Stuart. Artificial
    Intelligence. A Modern Approach. Prentice Hall
    2000.
  • ranger.uta.edu/cook/ai1/lectures/l1/node6
  • www.darmstadt.gmd.de/publish/komet/gen-um/node10.h
    tmlSECTION00351000000000000000
  • www.dobrev.com/AI/definition
  • www.usatoday.com/tech/news/2001-06-20-ai-history
  • www.webopedia.com/TERM/A/artificial_intelligence
Write a Comment
User Comments (0)
About PowerShow.com