Title: Schaum
1Special Probability Distributions
- Schaums Outline
- Probability and Statistics
- Chapter 4
- Presented by Carol Dahl
2Chapter 4 Outline
- Binomial Distribution
- Normal Distribution
- Poisson Distribution
- Relations Between Distributions
- Binomial and Normal
- Binomial and Poisson
- Poisson and Normal
- Central Limit Theorem
3Outline
- Multinomial Distribution
- Hypergeometric Distribution
- Uniform Distribution
- ?2 Distribution
- t-Distribution
- F-Distribution
- Cauchy
- Exponential
- Lognormal
4Introduction
- Special Probability Distributions
- give probabilities for random variables
- discrete and continuous
- help us make inferences
-
5Distributions Help Make Inferences
- Powerful tools - uncertainty
-
-
- prediction
- confidence intervals Q ßo ß1P
ß2Y - hypothesis tests
6Binomial Distribution
- You own ten draglines for mining coal
-
-
7 Binomial (Bernoulli) Distribution
- Probability associated with no repairs
- P(no repairs) p
- P(repairs) (1-p) q
- If breakdown between machines independent
- Bernoulli Trial
- n trials 10
- x number with no repairs out of n draglines
- Binomial distribution
- P(Xx)?n? pxqn-xn!/(x!(n-x)!)pxqn-x
- ?x?
8Binomial Example
- Dragline P(repairs) 0.2
- Binomial P(Xx) ( n ) px(1-p)n-x
-
( x ) - P(X2) (10) 0.22 (1-0.2)10-2 10!
0.220.88 - 2 2!(10-2)!
- 0.302
- Excel insert, function, statistical, binomdist
- binomdist(x,n,p,cumulative)
- (true or
false) - binomdist(2,10,0.2,false)
9 Probabilities of Dragline Repairs
- Number of Probability of
- repairs Repair
0 0.107
1 0.268
2 0.302
3 0.201
4 0.088
5 0.026
6 0.006
7 0.001
8 0.000
9 0.000
10 0.000
10Probabilities of Dragline Repairs
11Properties of Binomial Distribution
- Discrete
- Suppose n 10, P 0.2
- Mean ?np 100.2 8
- Variance ?2npq 100.20.8 1.6
- Standard deviation ? (1.6 )0.5 1.265
- Coefficient of skewness
- a3(q-p)/? (0.8 0.2)/ 1.265 0.474
- Coefficient of kurtosis
- a43(1-6pq)/npq 3 (1-60.80.2)/1.6 3.025
12Functions Relating to Binomial
- Moment generating function M(t)(qpet)n
- M(t) E(etX) ?xetXP(X)
- E(X) ?xXP(X) M'(0)
- M'(t)n(qpet)n-1pet
- M'(0)n(qpe0)n-1pe0 n((1-p)p)n-1p np
- E(X2) ?xX2P(X) M''(0)
- E(X3) ?xX3P(X) M'''(0)
- Replacing t by i? with i imaginary number
- (-1)0.5 then we get another useful function
- Characteristic function f(?)(qpei?)n
13Law of Large Numbers for Bernouilly Trials
- Estimate p by sampling p x/n
- By increasing number of trials
- can get as close as we want to true mean
- lim P (X/n pgte) 0
- n-gt?
14Standard Normal (0,1)
- Most important continuous distribution (Gaussian)
- f(Z) 1 exp(-Z2/2) dZ
- (2?2)0.5
15Standard Normal (0,1) Example
- Building a hydro Three Gorges 18,000 MW
16Standard Normal (0,1)
- Want to know
- how much rainfall deviated from normal Z
- Z N(0,1) with Z measured in inches
- Five things you might want to know
- P(Z lt a) P(Z gt b)
- P(Z lt -c) P(Z gt -d)
- P(e lt Z lt f)
17Standard Normal (0,1)
- f(Z) 1 exp(-Z2/2) dZ
- (2?2)0.5
- P(Z lt a) P(Z gt b)
- P(Z lt -c) P(Z gt -d)
- P(e lt Z lt f)
-
18Standard Normal (0,1)
- P(Z lt a) 1 ? aexp(-Z2/2) dZ
- (2?)0.5 -?
- P(Z gt b) 1 ? ? exp(-Z2/2) dZ
- (2?)0.5 b
- P(Z lt -c) 1 ?-cexp(-Z2/2) dZ
- (2?)0.5 -?
- P(Z gt -d) 1 ? ? exp(-Z2/2) dZ
- (2?)0.5 -d
- P(e lt Z lt f) 1 ? f exp(-Z2/2) dZ
- (2?)0.5 e
- P(e lt Z lt f) P(Z ltf) P(Z lt e)
19Standard Normal (0,1)
- But difficult to integrate
- use Tables, Excel, other computer packages
- Normal Tables Schaums GHJ
- P(0ltZltz) 1 ? z exp(-Z2/2) dZ
- (2?)0.5 0
20Standard Normal (0,1) - Table
-
- Table P(0ltZltz)
- P(0ltZlt 2) 0.477
- P(Zlt2) 0.5 0.477
-
21Standard Normal (0,1) - Table
-
- Table P(0ltZltz)
- (Zgt1.52)1P(Zlt 1.52)
- 1 (0.5 0.436) 0.564
22Standard Normal (0,1) - Table
-
- Table P(0ltZltz)
- (Zgt-1.58)P(Zlt1.58)
- 0.5 0.443
23Standard Normal (0,1) - Table
- Table P(0ltZltz)
- (Zlt-2.56)P(Zgt2.56)
- 1- P(Zlt2.56)
- (1(0.50.495)0.005
24Standard Normal (0,1) - Table
- Table
- P(0ltZltz)gt
- (-0.54ltZlt2.02)
- P(Zlt2.02)-(Zlt-0.54)
- ?
25Standard Normal (0,1) - Table
-
- Excel
- P(- ?ltZltz) normsdist(z,true)
- P(Zlt2.0) normsdist(2) 0.977
26Standard Normal (0,1) - Table
-
- Excel
- P(- ?ltZltz) normsdist(z,true)
- P(Zgt2.0) 1- normsdist(2) 0.023
- P(Z gt -2) 1- normsdist(-2) 0.97
27Inverse Normal
- Normal P(Zlt1) ??
- Deviation in rainfall lt 1 inch above normal
what of the time? - P(Zlt-1.5) ??
- Deviation in rainfall lt 1.5 inch below normal
- what of the time?
- Inverse Normal
- P(Zltz) 0.05
- Rain fall deviates lt what amount 5 of the time
28Standard Normal (0,1) Inverse
-
- Table P(0ltZltz)gt
- P(Zlta) 0.698
- 0.5 0.198
- a 0.52
29Standard Normal (0,1) - Inverse
- Table P(0ltZltz)gt
- P(Zgta) 0.476
- P(Zgta) 1 P(Zlta)
- P(Zlta) 0.524
- 0.5 0.024
- a 0.06
30Standard Normal (0,1) - Inverse
- Table P(0ltZltz)gt
- P(Zlta) 0.288 P(Zgt-a)
- P(Zlt-a) 1 P(Zgt-a)
- 0.712 0.5 0.212
- -a 0.56 -gt a?
31Standard Normal (0,1) - Inverse
-
- Table P(0ltZltz)gt
- P(Zgta) 0.846
- P(Zgta) P(Zlt-a)
- P(Zlt-a) 0.5 0.346
- - a 1.02
- a -1.02
32Normal Example Inverse Excel
- P (Zlta) 0.698 normsinv(0.698) 0.519
- P (Zlta) 0.288 normsinv(0.288) -0.559
- P (Zgta) 0.846 -normsinv(0.846) -1.019
- P (Zgta) 0.210 normsinv(1-0.210) 0.806
- P(-altZlta) 0.5 normsinv(0.75) 0.67449
33Properties of Normal Distribution
- Mean ?
- Variance ?2
- Standard deviation ?
- Coefficient of skewness ?30
- Coefficient of kurtosis ?43
- Moment generating function
M(t)e? t(?2t2/2) - Characteristic function ?(?)ei? ?-(? 2 ? 2/2)
34Relation between Distributions
- Binomial gt Normal n gets large
-
35Poisson Distribution
- Discrete infinite distribution with pdf
- f(x)P(Xx)?xe- ? /x! x0,1,2,3,...
- ? mean
- decay radioactive particles
- demands for services
- demands for repairs
-
36Poisson Distribution
-
- Example X number of well workovers/month
- X poisson mean ? 5
- P(X 3) 53e-5 0.140
- 5!
37 Poisson Distribution
in Excel
- Excel
- poisson(x,?(mean),cumulative)
- true or
false - P(X 3)
- poisson(3,5,false) 0.14
- P(Xlt 3)
- poisson(3,5,true) 0.265
- p(X gt 8)
- 1 - poisson(7,5,true) 0.13
-
38Properties of Poisson
- Mean ? ?
- Variance ?2 ?
- Standard deviation ? ?1/2
- Coefficient of skewness ? 3 ?-1/2
- Coefficient of kurtosis ? 4 3 1/?
- Moment generating function M(t)e? (et-1)
- Characteristic function ?(?)e? (e(i?)-1)
39Relations between Distributions
- Poisson and Binomial close
- when n large p small
- Poisson and Normal are close when n gets large
- To standardize Poisson
- Z (X - ?)/ ?0.5
-
40Central Limit Theorem
random variables X1, X2, independent
identically distributed finite mean m and
variance s2. then ?X (X1 X2 Xn)/n goes
to a N(m, s2/n) as n -gt ?
41Multinomial Distribution
- Example You work for a gas company
- likelihood a family will buy
- gas furnace is 1/2 (p1)
- electric furnace is 1/3 (p2)
- fuel oil furnace is 1/6 (p3)
- 10 furnaces (n) replaced in next heating season
probability that - 5 (x1) gas?
- 4 (x2) electric
- 1 (x3) fuel oil?
42Multinomial Distribution
Generalization of binomial A1, A2, A3,Ak are
events occur with probabilities p1, p2,pk If
X1, X2, Xk are random variables number of
times that A1, A2,Ak occur n trials X1
X2Xk n then P(X1 n1, X2 n2,, nk)
n! p1n1 p2n2pknk
n1! n2!nk! Where n1 n2, nk n
43Multinomial Distribution
- Work out probability for
- 5 (x1) gas?
- 4 (x2) electric
- 1 (x3) fuel oil?
- P(x15, x24, x31)
44- Hypergeometric Distribution
Example Box of drilling bits contains 5 X
bit 4 bit 3 button bit 6 bits selected
at random from box no replacement Find
probability 3 are X bits,
2 are bits and
1 is button bits
45Hypergeometric Distribution
Probability P(choose x1 from n1, x2 from n2,
etc
46Hypergeometric Distribution Excel
Example Box contains 6 assays of copper
4 assays of gold choose an essay at
random no replacement 5 trials X number of
copper essays chosen P(X3) Use hypergeometric
47Hypergeometric Distribution Excel
We are choosing from two categories - copper
(s) and gold (not s) X - number of copper
assays chosen number in s ns 6, number in
not s nns 4 total population nsnns 6 4
10 sample size n 5 hypgeomdist(x,n,ns,n
snns) P(Xltx). P(X3) hypgeomdist(3,5,6,10)
- hypgeomdist(2,5,6,10)
0.476
48Uniform Distribution
Random variable X uniformly distributed in
altxltb if density functions
1/(b-a) altxltb f(x) 0
otherwise
49Uniform Distribution Example
Failure rate on bits X f(x) 1/2 2 lt X lt 4
years P (X gt 3) ?34(1/2)dX 0.5X 34
0.54 0.53
0.50 half of bits last more than 3 years P
(2ltXlt 2.5) ?22.5(1/2)dX 0.5X 22.5
0.52.5 0.52
0.25 P(2.7ltXlt3.3) ?
50Distributions for Econometric Inference
- Y ßo ß1X1 ß2X2 ?
- estimate ßs
- Y bo b1X1 b2X2
- assumptions about distribution of ?
- mean and variance
- gives us distributions of Y, bo, b1, b1
- mean and variance
51Distributions derived from Normal
2
?21
?
N(0,1)2
?
52Distributions derived from Normal
2
2
. . . .
?
?2n
N(0,1)2
?
53?2 Distribution Tests on Variance
-
- Y (N-1)s2/?2 ?2(N-1) 0 lt Y lt ?
- Want to know
- P(Y lt b)
- P(Ygt a)
- P(altYltb)
54?2 Distribution Probability from Table
P(Y2 gt 0.103) 0.95 P(Y2 gt 5.991) 0.05 P(Y4 lt
9.488) 1 - P(Y4 gt 9.488) 1 0.05 0.95
P(0.297ltY4lt9.448) ?
55?2 Distribution Inverse Probability from Table
P(Y3 gt c) 0.95 c 0.352 P(Y4 lt c) 0.99 1
- P(Y4 gt c) 1 0.99
0.01 gt c 13.277
56?2 Distribution Probability from Excel
P(Y5 gt c) chidist(c,5) P(Y5 gt 2)
chidist(2,5) 0.849 P(Y6 lt c) 1 P(Y6 gt c)
1- chidist(c,6) P(Y6lt4) 1 - P(Y6 gt 4)
1- chidist(4,6) 0.323
57?2 Distribution Inverse Probability from Excel
P(Y3 gt c) ? gt c chiinv(?,3) P(Y3 gt c)
0.05 gt c chiinv(0.05,3) 7.815 P(Y6 lt c) ?
P(Y6 gt c) 1 - ? gt c chiinv(1- ?,6) P(Y6ltc)
0.1 gt c chiinv(0.90,6) 2.204
58Distributions for Econometric Inference
- Y ßo ßX1 ß2X2 ? ?Y bo b1X1 b2X2
assumptions about distribution of ? - ? mean E(?) 0, variance ?2
- gives us distributions of Y, bo, b1, b2
- Each has mean
- E(Y), E(bo), E(b1), E(b2)
- Each has variance
- ? 2, ? 2bo, ? 2b1, ? 2b2
- ?2 tests on variance
- part of other distributions
59t-Distribution
N(0.1)
tdf
??2/df
df
60t-Distribution k degrees of freedom
61t-Distribution Properties
- Properties
- When df gt30 approximates Standard Normal
- Symmetrical with mean 0 and variance
-
- df gt 2
62t-Distribution Uses
- Used in Econometrics to
- Make inferences on means
- Similar to Normal but tables set up differently
- df bigger the larger the sample
- if n large use normal tables
63t-Distribution Probabilities Tables
P(t2 gt 1.886) 0.10 P(t4 lt 2.132) 1 - P(t4
gt 2.132) 1 0.05 0.95 P(t2gt-1.886)
P(t2lt1.886) 1- (t2gt1.886) 1 0.10
0.90 P(t4 lt -2.132) P(t4 gt 2.132) 0.05
P(1.638ltt3lt3.182)?
64t-Distribution Inverse from Tables
P(t3 gt c) 0.025 c3.182 P(t4lt c) 0.90 1 -
P(t4 gt c) 0.90 P(t4 gt c) 0.10 c
1.533 P(t3 gt -c) 0.975 P(t3 lt c) 0.975
1 - P(t3 gt c) 0.975 P(t3 gt c)
0.025 c 3.182 P(t1lt -c) 0.05
P(t1gt c) c 6.314 P(c1ltt3ltc2)
0.90 ?
65t-Distribution from Excel
P(tdfgt c) ? ? tdist(c,df,1) ?
tdist(c,df,2)/2 P(t10gt 2.10)
tdist(2.10,10,1) 0.031 P(t20lt
1.86) 1 - P(t20gt1.86) 1
- dist(1.86,20,1) 0.961
66t-Distribution from Excel
P(t15gt-1.56) P(t15lt1.56) 1- (t15gt1.56)
1 tdist(1.56,15,1) 0.93 P(t12 lt
-2.132) P(t12 gt 2.132)
tdist(2.132,12,1) 0.027 P(c1ltt3ltc2) 0.99
?
67t-Distribution Inverse from Excel
P(tdf gt c) ? ctinv(?2,df1) P(t10 gt c)
0.15 c tinv(0.152,10) 1.093 P(t25lt
c) 0.90 1 - P(t25gt c) 0.90
P(t25gtc) 0.10 c tinv(0.102,25) c
1.316
68t-Distribution Inverse from Excel
P(t3 gt -c) 0.975 P(t3 lt c) 0.975
1 - P(t3 gt c) P(t3 gt c) 0.025 c
tinv(0.0252,3) c 3.182 P(t1lt -c)
0.05 P(t1gt c) c tinv(0.052,1)6.314 P(c
1ltt17ltc2) 0.90 ?
69F-Distribution
df1
df2
70F-Distribution
71F-Distribution
- Used in Econometrics to
- Test between
- two variances
- several means
- subset ?s not simultaneously 0
- Comes from ?2 so 0ltF
72F-Distribution Relation to Other Distributions
If k2 (denominator df) is large
73F-Distribution
Properties k1 numerator df k2
denominator df Skewed to right approaches
N(0,1) as k1 and k2 get larger Mean
k2 gt
2 Variance
k2 gt 4
74F-Distribution Probabilities from Tables
P(F1,2gt18.513) 0.05 P(F3,6lt4.757) 1 -
P(F3,6gt4.757) 1 0.05
0.95
75F-Distribution Inverse from Tables
P(F1,2gtc) 0.05gt c 18.513 P(F3,6ltc) 0.95
1 - P(F3,6gtc) P(F3,6gtc) 0.05 gt c 4.757
76F-Distribution Probabilities from Excel
P(F2,1gt26) fdist(f,df1,dfd2)
fdist(26,2,1) 0.137 P(F6,3lt5.8) 1 -
P(F6,3gt5.8) 1-fdist(5.8,6,3)
1 - 0.0392 0.9608
77F-Distribution Inverses from Excel
P(F6,8gtc) 0.07 c finv(?,df1,df2)
finv(0.07,6,8) 3.12 P(F9,1ltc) 0.96 1 -
P(F9,1gtc) P(F9,1gtc) 0.04 c finv(0.04,9,1)
376.06
78Cauchy Distribution
- a
- f(x) p (x2 a2) agt0,
- ? ltxlt ? -
- symmetric around 0
- no moment generating but characteristic function
- like normal but fatter tails
- no variance
- can have bimodal
- t 1 degree of freedom is a Cauchy
79Exponential
- f(x) ?e-(x/?) xgt0
- excel expondist(x,?,true)
- applications
- queuing theory
- continuous
- related to Poisson (same lambda)
- Poisson number of repairs
- exponential time between repairs
- life of light bulbs
80Exponential
graph the exponential function for ? 1, 3, 10
81Exponential Example
- Example When drilling oil well
- breakage or lost tool down hole
- fishing for it
- expensive
- no luck fishing
- deviate well
- Suppose fish time t exponential ?1/3.
- longer than 7 hours better to deviate
- percent of time better to deviate?
- 1-expondist(7,1/3,true)0.096972
82Integrate Exponential Functions
- Make review mineral examples to show how to
integrate - ex, e-x, eax
-
83Integrate Exponential Functions Rulesadd example
- General integration rule
- ? ekx dx ekx / k for example ? ex
dx ex - Integration by substitution rule
- ? x ex2 dx
- Substitute u x2 du 2x dx or dx du/2x
- Then
- ? x eu (du/2x) ½ ? eu du ½ eu
84Integrate Exponential Functions Rules
- Integrate by parts
- ? x ex dx
-
- Let f (x) x and g\ ex, then f\(x) 1 and g(x)
ex - ? x ex dx f (x) . g (x) - ? g (x) . f\ (x)
dx -
- x ex - ? ex dx x ex ex
- To check take the derivative for this expression
- (x ex - ex) it will give (x ex )
-
85Integrate Exponential Functions
4-85
integrate by parts v x u e-?x dv
dx du -?e-?xdx
864-86
Integrate Exponential Functions
87Integrate Exponential Functions
4-87
88Log Normal
X is lognormally distributed if Y Ln(X) is
normally distributed Uses -
failure rates - mineral deposits
89Log Normal
m mean s sigma standard deviation
Sourcehttp//mathworld.wolfram.com/LogNormalDistr
ibution.html
90Log Normal
91Log Normal in Excel
lognormal distribution is
lognormdist(x, mean, std. dev.) lognormdist(
1.5,0.5,0.5) 0.425019
92Chapter 4 Sum Up
- Special Distributions Powerful tools
- Binomial Distribution
- Normal Distribution
- Poisson Distribution
- Relations Between Distributions
- Binomial and Normal
- Binomial and Poisson
- Poisson and Normal
93Chapter 4 Sum Up
- Central Limit Theorem
- Multinomial Distribution
- Hypergeometric Distribution
- Uniform Distribution
- Distributions from Normal
- ?2 Distribution
- t-Distribution
- F-Distribution
- Y ßo ß1X1 ß2X2 ?
94Chapter 4 Sum Up
- Cauchy
- Exponential
- Lognormal
95End of Chapter 4