CCSW: The Competence Center Semantic Web

1 / 18
About This Presentation
Title:

CCSW: The Competence Center Semantic Web

Description:

Cross-Lingual and Multimedia Information Access. Company- and User-Adaptive Information Systems ... Content-Based, Cross-Lingual & Multimedia Information Access ... – PowerPoint PPT presentation

Number of Views:28
Avg rating:3.0/5.0
Slides: 19
Provided by: bol90

less

Transcript and Presenter's Notes

Title: CCSW: The Competence Center Semantic Web


1
CCSWThe Competence Center Semantic Web
  • Harold Boley, DFKI GmbH
  • Presentation in Course Rule Markup Languages
  • Univ. Kaiserslautern, April 26th, 2002

2
General Overview
  • Semantic Web W3C Activity on machine-interpreted
    documents that can be used (not just for display
    but) for automation, integration, and reuse
    across applications (http//www.w3.org/2001/sw/ac
    tivity)
  • DFKI has long been working in Semantic Web
    technologiesDescription logics, ontologies,
    metadata, rule systems, agents,NL parsing,
    information extraction, knowledge management,
    etc.
  • Current CCSW focus at DFKI Robust Web-document
    authoring annotation for agent-based
    information management with webizedobject
    representations, ontologies rule systems
  • CCSWs Semantic Web view Higher-level system
    emerging from increasingly structured subwebs,
    each serving needs of specific community

Co-Heads Dr. Harold Boley (Kaiserslautern), Dr.
Paul Buitelaar (Saarbrücken)
URL http//ccsw.dfki.de
Services Consulting, Studies Projects
3
Semantic Web and Web ServicesUse Databases and
Rule Systems
4
General DFKI SemWeb Areas
  • Content Ontology Development
  • Manual, Semi-Automatic Ontology Learning and
    Adaptation
  • Specific for a Task, Organisation (IntraNet),
    Domain (ExtraNet)
  • Applications Intelligent and Dynamic Information
    Integration and Access
  • Intelligent Information Integration
  • Intelligent, Cooperative Agents
  • Content-Based Information Access
  • Cross-Lingual and Multimedia Information Access
  • Company- and User-Adaptive Information Systems
  • Distributed Agent-Based Organizational Memories

5
Some SemWeb Applications_at_DFKI (I)
  • Intelligent Information Integration
    Intelligent, Cooperative Agents
  • SmartKOM Combination of User Modeling and Plan
    Recognition to Integrate Knowledge from
    Multimodal Sources
  • Intelligent Information Integration
  • MUMIS Ontology-Based Information Integration
    from Multilingual Sources
  • Content-Based, Cross-Lingual Multimedia
    Information Access
  • Combinations of Ontology-Based Information
    Extraction, Text Mining and Semantic Annotation
    for Knowledge Markup of Text or Multimedia
    Documents with Metadata for Content-Based,
    Cross-Lingual, Multimedia Information Access
  • GETESS (Information Extraction, Text Mining),
    MuchMore (Semantic Annotation, Text Mining),
    MUMIS (Information Extraction, Multimedia)

6
Some SemWeb Applications_at_DFKI (II)
  • Company- and User-Adaptive Information Systems
  • Adaptive READ Document Retrieval on the Basis of
    Machine Learning
  • Algorithms for Automatic IR-Parameter
    Optimization
  • Distributed Agent-Based Organizational Memories
  • FRODO Ontology Acquisition from Texts and User
    Interaction
  • for Workflow Enactment and Information Access

7
The Semantic Web Layered Architecture
Tim Berners-Lee Axioms, Architecture and
Aspirations W3C all-working group plenary
Meeting 28 February 2001
(http//www.w3.org/2001/Talks/0228-tbl/slide5-0.ht
ml)
8
Present SemWeb Challenges
  • Can we make W3Cs original Semantic Web notion
    more
  • precise (Semantic) content data vs. metadata
    semantics?
  • specific (Web) some intranets vs. the
    Internet?
  • What techniques will semantic webs use from
    Information Retrieval, Databases, Ontologies,
    (Description, Horn) Logics, W3C Markup Languages
    (XML, RDF, XSLT), Knowledge Management, Agents,
    Web Services (WSDL), ...?
  • Which semweb success stories (killer apps)
    exist (dmoz.org UNSPSC, eCl_at_ss , ECCnet)?
  • How to rank candidate semweb applications for
    showing the semweb potentials in our own
    organizations and for our customers?

9
SemWeb Language Principles
  • Existing (database, logic) languages can be
    webized (Tim Berners-Lee) by introducing URIs
    as a new kind of (constant) symbols
  • The languages should be scalable to a large
    amount of Web-distributed content, hence should
    use a small, if not minimal, formalism
  • A simple formalism doesnt interfere with the
    content
  • Relational databases with SQL are a good example
  • XML DTDs, the RDF model, the DAMLOIL core, and
    the modularized RuleML are such candidate
    languages (unlike, perhaps, XML Schema, the many
    RDF syntaxes, full DAMLOIL, or a monolithic
    RuleML)

10
SemWeb Core IssueMetadata Ontologies (I)
  • For Web-page annotation, browsers should use a
    top-level pane/menu for metadata (cf. Annotea)
  • Metadata should be generated interactively from
    content data, via standardized domain ontologies
    (NLP tools/resources for metadata extraction
    annotation)
  • Search engines should show same ontologies for
    navigating-searching content with high precision
  • Information agents may also use the ontologies
    for retrieving and integrating content for users

11
SemWeb Core IssueMetadata Ontologies (II)
  • Instead of a single global ontology for
    metadata there will certainly be several local
    ontologies, which require integration, e.g. by
    alignment on demand or via derivation/transformati
    on rules
  • Maintenance of domain ontologies for metadata
    must be machine-supported, e.g. by links and/or
    transformations between versions (cf. MeSH)
  • Metadata ontologies can describe heterogeneous
    Web pages in a homogeneous format
  • Some ontology queries provide direct answers
    (fact retrieval) others provide relevant Web
    pages (document retrieval) yet others, both

12
Web-Based B2C or B2B Rule Exchange
. . .
translate to standard format (e.g., RuleML)
publish rulebase1
publish rulebasem
compare, instantiate, and run rulebases
13
From Natural Language to Horn Logic
14
RuleML Markup and Tree
''The discount for a customer buying a product is
5.0 percent if the customer is premium and the
product is regular.''
ltimpgt lt_headgt ltatomgt
lt_oprgtltrelgtdiscountlt/relgtlt/_oprgt
ltvargtcustomerlt/vargt ltvargtproductlt/vargt
ltindgt5.0 percentlt/indgt lt/atomgt
lt/_headgt lt_bodygt ltandgt ltatomgt
lt_oprgtltrelgtpremiumlt/relgtlt/_oprgt
ltvargtcustomerlt/vargt lt/atomgt
ltatomgt lt_oprgtltrelgtregularlt/relgtlt/_oprgt
ltvargtproductlt/vargt lt/atomgt
lt/andgt lt/_bodygt lt/impgt
15
Intertranslating RuleML and RFML
''The discount for a customer buying a product is
5.0 percent if the customer is premium and the
product is regular.''
ltimpgt lt_headgt ltatomgt
lt_oprgtltrelgtdiscountlt/relgtlt/_oprgt
ltvargtcustomerlt/vargt ltvargtproductlt/vargt
ltindgt5.0 percentlt/indgt lt/atomgt
lt/_headgt lt_bodygt ltandgt ltatomgt
lt_oprgtltrelgtpremiumlt/relgtlt/_oprgt
ltvargtcustomerlt/vargt lt/atomgt
ltatomgt lt_oprgtltrelgtregularlt/relgtlt/_oprgt
ltvargtproductlt/vargt lt/atomgt
lt/andgt lt/_bodygt lt/impgt
lthngt ltpattopgt ltcongtdiscountlt/congt
ltvargtcustomerlt/vargt ltvargtproductlt/vargt
ltcongt5.0 percentlt/congt lt/pattopgt
ltcallopgt ltcongtpremiumlt/congt
ltvargtcustomerlt/vargt lt/callopgt ltcallopgt
ltcongtregularlt/congt ltvargtproductlt/vargt
lt/callopgt lt/hngt
16
Current Players
  • USA W3C, DARPA, NSF, Maryland, Stanford,
    ...
  • Canada NRC-IIT-CISTI, ...
  • Europe IST
  • Netherlands Amsterdam, Twente, ...
  • UK Manchester, Newcastle, ...
  • France INRIA , ...
  • Germany Karlsruhe, DFKI, Hannover, Hamburg,
    Berlin, IW-Köln, ...
  • Sweden Linköping
  • Switzerland MCM
  • Japan INTAP, Keio, CARC, Ricoh, ...
  • Korea KAIST
  • Australia Melbourne, ...
  • . . .

17
Major Funding
  • USA DAML, W3C Web Ontology Working Group
  • Canada NRC
  • Europe OntoWeb, Semantic Web Technologies
  • Japan METI
  • . . .
  • Canada Europe ISTEC
  • Japan Europe ?
  • . . .

18
SemWeb Courses
  • University of Maryland
  • Stanford University
  • Lehigh University
  • Vrije Universiteit Amsterdam
  • Universität Karlsruhe
  • Universität Kaiserslautern
  • Universität Saarbrücken
  • ...
Write a Comment
User Comments (0)