Title: Condensate of Fermionic Lithium Dimers
1Condensate of Fermionic Lithium Dimers
Thomas Bourdel, Julien Cubizolles , Lev
Khaykovich, Frédéric Chevy, Jing Zhang, Martin
Teichmann, Servaas Kokkelmans, Christophe
Salomon
Laboratoire Kastler Brossel, Ecole Normale
Supérieure, Paris, Séminaire interne, Janvier,
2004
2Outline
- Formation and detection of molecules
- Cooling to condensation
- Condensates
- Double structure
- Comparaison with other molecular condensates
- Some more proofs of condensation
- Condensates in very anisotropic traps
- An ellipticity study
3How to form molecules ?
- Sympathetic cooling of fermions by
- evaporation of bosons
- Transfer into the optical trap
- Hyperfine transfer by RF adiabatic passage
- Increase of the magnetic field to 1060 Gauss
- Mixture ½ Zeeman Transfer by RF sweep on
resonance - (Evaporation by lowering the trap intensity)
- Slow crossing of the Feshbach resonance
- (Further evaporation)
- Detection
4How to detect dimer formation ?
For the probe laser to be on resonance, the
magnetic field needs to be turned off. The
unbrocken dimers are not detected.
Double ramp method
Importance of the ramp speed Adiabaticity
Ancienne figure
5Temperature effects
The cooler, the more molecules, Independant of
ramp speed
The molecules are likely to be in thermal and
chemical equilibrium with the atoms
Creating molecules is heating
6Evaporative cooling to condensation ?
- Very high collision rates
- Elastic collision rate
- Three body recombinaison rate
- Long Lifetimes close to resonance
- Evaporation with alt0 (D. Jin)
- or with agt0 (R. Grimm, W. Ketterle)
t 0.5 s
t 20 ms
a 78 nm
a 35 nm
7How to directly detect molecules ?
- Low binding energy It is possible to brake the
molecules with a fast magnetic field sweep - When breaking the molecules, some extra energy is
released - High field imaging
- RF dissociation of molecules during TOF
- Detection of molecules only
- Increase B during TOF before breaking molecules
while going to B0
Detection at low field
Compensation coils off
Optical trap off
0.2 ms
0.2 ms
Pinch coils off
0.8 ms
8Fermion evaporation
TOF0.35ms N105 w4 kHz
TOF0.35 ms N7.104 w2.7 kHz
TOF1 ms N5.104 w1.6 kHz
TOF1 ms N5.104 w1.1 kHz
TG10.5 mK TF 12 mK TG/TF 0.87
TG3.1 mK TF 5.7 mK TG/TF 0.54
TG1.7 mK TF 3.7 mK TG/TF 0.46
TG1 mK TF 2.5 mK TG/TF 0.4
9Double structure
N4.5 104 atoms w1.1 kHz
Gaussian fit on the wings in X Tat0.55 mK,
Tmol1.1 mK Gaussian fit in Y Tat0.55 mK,
Tmol1.1 mK m1.4 mK, for amm120 nm, and 2 103
condensed molecules Tc1.2 mK for 1.5 104
molecules
102 dimension bimodal fit
No structure in Y direction
11Proof of condensation
TOF0.8 ms (with field)0.2 ms (B up)0.2 ms (B
off)
Fermions _at_ 950 G Evaporation to 0.1
AtomsMol _at_ 770 G Evaporation to 0.1 Molecular
Fractiongt0.5
Atoms Mol _at_ 770 G Evaporation to 0.2
12Condensates of molecules
- D. Jin (JILA)
- R. Grimm (Innsbruck)
- W. Ketterle (MIT)
- ENS
13Very anisotropic trap _at_ 770 G
Evaporation only on vertical Frequencies 5 kHz,
650 Hz w2p2.5 kHz Fit RF31 mm Calcul RF20
mm
Evaporation only on horizontal Frequencies 1.25
kHz, 2.4 kHz w2.0 kHz
14Ellipticity study as a fonction of field
15Double structures ?
16Double structures ?
795 G
770 G
848 G
874 G
808 G
770 G
954 G
822 G
782 G
17Conclusions
- Careful check of the number of remaining atoms
- Lifetime of the condensate
- Study of the value of Tc
- Evaporation toward a pure condensate
- Decrease B to lower value, (decrease a)
- Coming back to the Fermion side
- Ellipticity as a function of degeneracy (a new
thermometer) - BCS
18High field imaging
Which transition are we using ? The detuning is
of the order of 400-600 MHz in the region of
interest. A double pass AOM at 225 MHz is added
on the probe beam.
1.5 105 atomes
19Thermodynamics of atom-molecule mixture
- 3 relevant energy scales Eb, T, m , 2 parameters
- Equilibrium
- mmol2 matEb
- Tat Tmol
- Simple Formulas
Condensat to be added when mmol0
20Thermodynamic results
Eb/Tcst
5
0
T/Tc
10
0
T/Tc
21Optical trap transfer problem
- The three directions of the trap are decoupled in
the Hamiltonian - With spin polarised fermions, no collision, no
adiabatic transformation of the trap possible.
Images apres transfer, apres augmentation du
champ, apres Ze transfert
22Condensat avec a réglable
Evaporation à a 2.5 nm en baissant profondeur
du piège optique en 250 ms
23Breaking a molecule
- Shift of resonance? Bpeak 855 - 53 Gauss
unlikely! - Three-body recombination D. Petrov, PRA 67,
010703 (2003) - Molecules form efficiently in highest weakly
bound state
Binding energy released
Molecules can be trapped!
EB
EB lt Etrap
Particles stay in trap
EB gt Etrap
Trap loss
24Notre terrain de jeux
25Le piège dipolaire
Cols 25mm Fréquences 2.5 kHz
26La résonance de Feshbach
27Mesure du gaz en interaction
Énergie du gaz piégé
- Images en temps de vol
- Expansion sans champ
- b) Expansion avec champ
-
Eintlt 0
28Résonance entre les états 1/2, 1/2 gt, 1/2,
-1/2 gt
M. Houbiers, H. Stoof, V. Venturi, C. Williams,
S. Kokkelmans
a 0 at 530(3) Gauss mauvaise évaporation Univ.In
nsbruck S. Jochim et al. Duke Univ. OHara et
al. Pertes à 680Gauss MIT, K. Dieckmann et
al. Résonnance Feshbach très fine à 550 G.
29Au delà de résonance
Mélange de fermions préparé à 1060 Gauss à T/TF
0.6 105 atoms a lt 0 no atom loss
B0 Expansion isotrope
B?0 Asymétrie de lexpansion, maximum à B 800
Gauss
30La résonance ??
Chauffage
Mélange préparé à 560 Gauss à T/TF0.6 7 104
atomes a gt 0 Pertes liées à un chauffage
Le plus anisotrope vers 800 G
Perte maximum 720 Gauss i.e 120 Gauss en dessous
de la position de la résonance prédite!
31Énergie dinteraction
Effet des molécules ?