Title: AA 4362 Astrodynamics Orbital Groundtracks
1 AA 4362 AstrodynamicsOrbital Groundtracks
Week 7 Vallado Chapter 3
Sections 3.4, 3.5, 3.6, 3.7
2Groundtracks
A ground track is the projection of a satellites
orbit onto the earths surface
3 Orbital Ground Tracks (contd)
4Transforming from Inertial to Earth Fixed
Coordinates
Lets Look at this first
5Precession of the Equinoxes
6Nutation of the Precession Cycle
7 8 Computing the Rotation Matrix
9Computing the Hour Angle
10 Universal Time (GMT)
11 12Relating GMST to UT1
13 14 15 Computing the Julian Day
16 Pulling it All Together
17 Pulling it All Together(contd)
18 Pulling it All Together(contd)
19 Pulling it All Together(contd)
20 Pulling it All Together(contd)
21 22How Does Earth Radius Vary with Latitude
23How Does Earth Radius Vary with Latitude(contd)
24 How Does Earth Radius vary with Latitude(contd)
25 Earth Radius Versus Latitude
26 27 What is the Earths Mean Radius
28Earth Radius Based on Volume
29Earth Radius (contd)
30Gaussian Surface
31 Geocentric vs Geodetic Coordinates
32 Geocentric vs Geodetic Coordinates(contd)
33 Geocentric vs Geodetic Coordinates(contd)
34 Geocentric vs Geodetic Coordinates(contd)
35 Geocentric vs Geodetic Coordinates(contd)
Whitmore, Stephen A., and Haering, Edward A.,
Jr., FORTRAN Program for the Analysis of Ground
Based Range Tracking Data--Usage and Derivations,
NASA TM 104201, December, 1992
36 Geocentric vs Geodetic Coordinates(contd)
37 Geocentric vs Geodetic Coordinates(contd)
Whitmore, Stephen A., and Haering, Edward A.,
Jr., FORTRAN Program for the Analysis of Ground
Based Range Tracking Data--Usage and Derivations,
NASA TM 104201, December, 1992
38 Pulling it all together
39 Pulling it all together (contd)
40 Pulling it all together (concluded)
41Numerical Example
42Numerical Example (contd)
43Numerical Example (contd)
44Numerical Example (contd)
45Numerical Example (contd)
46 Numerical Example (contd)
47 Numerical Example (contd)
48(No Transcript)
49Groundtrack Examples
50Types of 3-D Orbits
Low-Earth Orbit (LEO)
- Inclined / Polar Orbits
- 160 - 6000 km
- Missions
- Manned (Shuttle)
- Reconnaissance / Weather
- Communications
51Types of 3-D Orbits (contd)
- Medium Earth Orbit (MEO)
- Semi-Synchronous Orbit
- 20,000 km
- Missions Navigation (GPS)
Satellite Footprint
52Types of 3-D Orbits (contd)
GEO
Geosynchronous
Geostationary
- Period 24 hrs
- Any inclination
- Does not need to be a circular orbit
- Period 24 hours
- Inclination near zero
- Circular (e zero)
- Altitude 35,780 km
53Geostationary
Satellite Stationary With respect to Earth Surface
i 0 e 0 T 24hrs
Satellite Footprint
54Geosynchronous (eccentric orbit)
Satellite No Longer Stationary With respect
to Earth Surface
i 0 e 0 T 24hrs
Satellite Footprint
55Geosynchronous (Inclined orbit)
Satellite No Longer Stationary With respect
to Earth Surface
i 0 e 0 T 24hrs
Satellite Footprint
56Geosynchronous (Inclined orbit)
Satellite No Longer Stationary With respect
to Earth Surface
i 0 e 0 T 24hrs
Satellite Footprint
57How Big is a GEO Orbit?
58Specialized Orbits(Molniya)
- Hangs over One
- Hemisphere for
- Most of its period
- then whips
- Through other
- portion
- Highly Eccentric
- 63.4 /116.6 Degree Inclination
- 500 - 40,000 km Altitude
- Missions Comm Relay (Molniya)
- Polar Coverage
Satellite Footprint