QCQA operations data processing intercomparison - PowerPoint PPT Presentation

1 / 13
About This Presentation
Title:

QCQA operations data processing intercomparison

Description:

Importance of data processing and flux computation in the ... Validation of the data using quality control tools (ogive functions, turbulent parameters etc ... – PowerPoint PPT presentation

Number of Views:52
Avg rating:3.0/5.0
Slides: 14
Provided by: brut
Category:

less

Transcript and Presenter's Notes

Title: QCQA operations data processing intercomparison


1
QC/QA operations data processing intercomparison
  • A. Brut, N. Jarosz, E. Ceschia?, J. Elbers?, B.
    Piguet,J.M. Bonnefond, O. Traullé

CNRM INRA ? ALTERRA ? CESBIO
2
Context and Objectives
  • Importance of data processing and flux
    computation in the framework of CarboEurope-IP
    and FLUXNET to improve turbulent flux estimates
    obtained with the eddy covariance method
  • To evaluate the differences in flux computation
    softwares
  • To detect  weaknesses  in data processing and
    improve the reliability of flux estimates

3
Data and methods
  • 3 summer days from Le Bray Tower (thanks to
    Nathalie Jarosz)
  •  Golden files  from 5 CarboEurope sites
    intercomparison still in progress (thanks to Jan
    Elbers)
  • Different sites, different instruments (sonic
    anemometers, fast sensors for H20/CO2)
  • Eddy covariance method Fc ltwcgt
  • But different  ways  to obtain fluctuations and
    to correct for errors (instrumental/theoretical)

4
Steps of flux computation
  • 1. Identification of spikes
  • 2. Corrections for cross-wind, time lag between
    sensors
  • 3. Calculation of rotations and averages
  • 4. Covariance calculation
  • 5. Spectral corrections after Moore (1986)
  • 6. Density corrections for scalar fluxes (Webb et
    al., 1980)
  • 7. Final unit conversions
  • Gap filling
  • Quality control

5
Results intercomparison
  • A few statistics

TEAMS INRA CESBIO ALTERRA CNRM U
R² 0.99 R² 0.99 R²0.99 R²0.99 slope a
1.01 a 0.93 a 1.01 a 1.04 Hs
R² 0.99 R² 0.99 R²0.96 R² 0.98
a 1.02 a 0.9 a 1.01 a 1.05
Le R²0.99 R²0.98 R²0.98 R²
0.96 a 0.94 a 0.87 a
1.05 a 0.97 Fc R² 0.97 R²0.95
R² 0.91 R² 0.93 a 0.99 a
0.84 a 1.06 a 1.10
6
Results friction velocity
7
Results friction velocity
  • - mean values over the 3 days
  • INRA 0.453 m/s
  • CESBIO 0.429 m/s
  • ALTERRA 0.451 m/s
  • CNRM 0.457 m/s
  • total mean value 0.45 0.012 m/s (3)

8
Results sensible heat flux
  • mean values over the 3 days
  • INRA 48.9 W/m²
  • CESBIO 39.3 W/m²
  • ALTERRA 51.6 W/m²
  • CNRM 49.1 W/m²
  • total mean value 47.2 5.4 W/m² (10)

9
Results latent heat flux
  • - more noise on data
  • - mean values over the 3 days
  • INRA 100.5 W/m²
  • CESBIO 93.6 W/m²
  • ALTERRA 109W/m²
  • CNRM 97.9 W/m²
  • total mean value 100.3 6.6 W/m² (6)

10
Results CO2 flux
  • - mean values over the 3 days
  • INRA -3.5 µmol/m²/s
  • CESBIO -2.6 µmol/m²/s
  • ALTERRA -4.7 µmol/m²/s
  • CNRM -3.4 µmol/m²/s
  • total mean value -3.55 0.86 µmol/m²/s (25)

11
Results energy budget
  • Latent sensible heat fluxes versus net
    radiation
  • high scatter for CNRM data
  • low value for the slope of linear fit for CESBIO

12
Conclusions
  • On average, good results for friction velocity
    but rather large scatter for CO2 fluxes
  • For a particular meteo event different flux
    estimates large discrepancies between flux
    algorithms lead to discrepancies of turbulent
    fluxes
  • In general - high scatter for CNRM data
  • - weaker fluxes for CESBIO
  • - higher flux values (on average) for
    ALTERRA

13
Suggestions
  • Follow all the recommandations of the 1st
    CARBOEUROPE QC/QA meeting to calculate the
    turbulent fluxes
  • Go on the investigation with the Golden files
  • Validation of the data using quality control
    tools (ogive functions, turbulent parameters etc
    )
  • Others ???
Write a Comment
User Comments (0)
About PowerShow.com