Oligopoly Models - PowerPoint PPT Presentation

1 / 26
About This Presentation
Title:

Oligopoly Models

Description:

Oligopoly Models. There are three dominant oligopoly models. Cournot (quantity) Bertrand (price) ... But each embodies the Nash equilibrium concept ... – PowerPoint PPT presentation

Number of Views:641
Avg rating:3.0/5.0
Slides: 27
Provided by: profe66
Category:

less

Transcript and Presenter's Notes

Title: Oligopoly Models


1
Oligopoly Models
  • There are three dominant oligopoly models
  • Cournot (quantity)
  • Bertrand (price)
  • Stackelberg (leader-follower)
  • They are distinguished by
  • the decision variable that firms choose
  • the timing of the underlying game
  • But each embodies the Nash equilibrium concept
  • Bertrand ? Se capacità produttiva e livello di
    output possono essere modificati facilmente (es.
    software, servizi bamcari/assicurativi)
  • Cournot ? se è più costoso modificare il livello
    di produzione o la capacità produttiva (cemento,
    acciaio, automobili, computer)

2
Matrice dei profitti in un gioco sulle quantità
prodotte (Cournot)

3
Cournot example American and United
  • Q 339 P demand function
  • MC 147 marginal cost
  • qA Q(P) qU (339 P) qU demand for A
  • qU Q(P) qA (339 P) qA demand for U
  • P 339 qA qU inverse demand function
  • MRA 339 2qA qU marginal revenue for A
  • MRU 339 2qU qA marginal revenue for U
  • Max profit ? MR MC
  • 339 2qA qU 147
  • qA 96 1/2 qU best response function for A
  • qU 96 1/2 qA best response function for U
  • qA 96 1/2 (96 1/2qA)
  • qA 64 qU 64
  • Q qA qU 128 P 339 Q 211

4
Monopolio Output che max il profitto per
American Airlines
(a) Monopolio
p
, per
passeggero
339
243
MC
147
D
MR
0
339
169.5
96
q
, Migliaia di passeggeri American Airlines
A
Per quadrimestre
5
Duopolio Output che max il profitto per
American Airlines
(b) Duopolio
p
, per
passeggero
339
275
211
MC
147
q

64
U
r
r
MR
D
D
0
339
275
137.5
64
128
q
, Migliaia di passeggeri American Airlines
A
per quadrimestre
6
Curve di reazione di American e United
q
, United, migliaia
U
di passeggeri per quadr.
192
Curva di reazione di American
96
Equilibrio di Cournot
64
48
Curva di reazione di United

0
192
96
64
q
, American, migliaia di
A
passeggeri per quadrimestre
7
Duopoly Equilibria
(a) Equilibrium Quantities
q
, Thousand United
U
passengers per quarter
192
American

s best-response curve
Contract
curve
Price-taking equilibrium
96
Cournot equilibrium
64
Stackelberg equilibrium
48
Cartel
United

s best-response curve
equilibrium
0
192
96
64
48
q
, Thousand American passengers per quarter
A
8
Cournot equilibrium and the number of firms
  • MR P(1 1/?r) ?r elasticity of the residual
    demand curve
  • ?r n? ? market elasticity of demand
  • n number of competing firms
  • MR P(1 1/n?) MC
  • n 1 ? monopoly
  • n 8 ? perfect competition
  • Lerner Index (P MC) / P - 1 / n?

9
Cournot Equilibrium Varies with the Number of
Firms

10
The Cournot Model
  • Start with a duopoly
  • Two firms making an identical product (Cournot
    supposed this was spring water)
  • Demand for this product is

P A - BQ A - B(q1 q2)
where q1 is output of firm 1 and q2 is output of
firm 2
  • Marginal cost for each firm is constant at c per
    unit
  • To get the demand curve for one of the firms we
    treat the output of the other firm as constant
  • So for firm 2, demand is P (A - Bq1) - Bq2

11
The Cournot model (cont.)
If the output of firm 1 is increased the demand
curve for firm 2 moves to the left
P (A - Bq1) - Bq2

The profit-maximizing choice of output by firm 2
depends upon the output of firm 1
A - Bq1
A - Bq1
Marginal revenue for firm 2 is
Solve this for output q2
Demand
c
MC
MR2 (A - Bq1) - 2Bq2
MR2
MR2 MC
q2
Quantity
A - Bq1 - 2Bq2 c
? q2 (A - c)/2B - q1/2
12
The Cournot model (cont.)
q2 (A - c)/2B - q1/2
This is the best response function for firm 2
It gives firm 2s profit-maximizing choice of
output for any choice of output by firm 1
There is also a best response function for firm 1
By exactly the same argument it can be written
q1 (A - c)/2B - q2/2
Cournot-Nash equilibrium requires that both firms
be on their best response functions.
13
Cournot-Nash Equilibrium
q2
The best response function for firm 1 is q1
(A-c)/2B - q2/2
If firm 2 produces (A-c)/B then firm 1 will
choose to produce no output
The Cournot-Nash equilibrium is at Point C at the
intersection of the best response functions
(A-c)/B
Firm 1s best response function
If firm 2 produces nothing then firm 1 will
produce the monopoly output (A-c)/2B
The best response function for firm 2 is q2
(A-c)/2B - q1/2
(A-c)/2B
C
qC2
Firm 2s best response function
q1
(A-c)/2B
(A-c)/B
qC1
14
Cournot-Nash Equilibrium
q1 (A - c)/2B - q2/2
q2
q2 (A - c)/2B - q1/2
(A-c)/B
? q2 (A - c)/2B - (A - c)/4B q2/4
Firm 1s best response function
? 3q2/4 (A - c)/4B
(A-c)/2B
? q2 (A - c)/3B
C
(A-c)/3B
? q1 (A - c)/3B
Firm 2s best response function
q1
(A-c)/2B
(A-c)/B
(A-c)/3B
15
Cournot-Nash Equilibrium (cont.)
  • In equilibrium each firm produces qC1 qC2 (A
    - c)/3B
  • Total output is, therefore, Q 2(A - c)/3B
  • Recall that demand is P A - BQ
  • So the equilibrium price is P A - 2(A - c)/3
    (A 2c)/3
  • Profit of firm 1 is (P - c)qC1 (A - c)2/9
  • Profit of firm 2 is the same
  • A monopolist would produce QM (A - c)/2B
  • Competition between the firms causes their total
    output to exceed the monopoly output. Price is
    therefore lower than the monopoly price
  • But output is less than the competitive output (A
    - c)/B where price equals marginal cost and P
    exceeds MC

16
Numerical Example of Cournot Duopoly
  • Demand P 100 - 2Q 100 - 2(q1 q2) A
    100 B 2
  • Unit cost c 10
  • Equilibrium total output Q 2(A c)/3B 30
  • Individual Firm output q1 q2 15
  • Equilibrium price is P (A 2c)/3 40
  • Profit of firm 1 is (P - c)qC1 (A - c)2/9B
    450
  • Competition Q (A c)/B 45 P c 10
  • Monopoly QM (A - c)/2B 22.5 P 55
  • Total output exceeds the monopoly output, but is
    less than the competitive output
  • Price exceeds marginal cost but is less than the
    monopoly price

17
Cournot-Nash Equilibrium (cont.)
  • What if there are more than two firms?
  • Much the same approach.
  • Say that there are N identical firms producing
    identical products
  • Total output Q q1 q2 qN
  • Demand is P A - BQ A - B(q1 q2 qN)
  • Consider firm 1. Its demand curve can be
    written

This denotes output of every firm other than firm
1
P A - B(q2 qN) - Bq1
  • Use a simplifying notation Q-1 q2 q3 qN
  • So demand for firm 1 is P (A - BQ-1) - Bq1

18
The Cournot model (cont.)
If the output of the other firms is increased the
demand curve for firm 1 moves to the left
P (A - BQ-1) - Bq1

The profit-maximizing choice of output by firm 1
depends upon the output of the other firms
A - BQ-1
A - BQ-1
Marginal revenue for firm 1 is
Solve this for output q1
Demand
c
MC
MR1 (A - BQ-1) - 2Bq1
MR1
MR1 MC
q1
Quantity
A - BQ-1 - 2Bq1 c
? q1 (A - c)/2B - Q-1/2
19
Cournot-Nash Equilibrium (cont.)
q1 (A - c)/2B - Q-1/2
As the number of firms increases output of each
firm falls
How do we solve this for q1?
The firms are identical. So in equilibrium
they will have identical outputs
? Q-1 (N - 1)q1
As the number of firms increases aggregate
output increases
? q1 (A - c)/2B - (N - 1)q1/2
As the number of firms increases price tends
to marginal cost
As the number of firms increases profit of each
firm falls
? (1 (N - 1)/2)q1 (A - c)/2B
? q1(N 1)/2 (A - c)/2B
? q1 (A - c)/(N 1)B
? Q N(A - c)/(N 1)B
? P A - BQ (A Nc)/(N 1)
Profit of firm 1 is P1 (P - c)q1
(A - c)2/(N 1)2B
20
Concentration and Profitability
  • Assume that we have N firms with different
    marginal costs
  • We can use the N-firm analysis with a simple
    change
  • Recall that demand for firm 1 is P (A - BQ-1) -
    Bq1
  • But then demand for firm i is P (A - BQ-i) -
    Bqi
  • Equate this to marginal cost ci

But Q-i qi Q and A - BQ P
A - BQ-i - 2Bqi ci
This can be reorganized to give the equilibrium
condition
A - B(Q-i qi) - Bqi - ci 0
? P - Bqi - ci 0
? P - ci Bqi
21
Concentration and profitability (cont.)
The price-cost margin for each firm is determined
by its own market share and overallmarket demand
elasticity
P - ci Bqi
Divide by P and multiply the right-hand side by
Q/Q
The verage price-cost margin is determined by
industryconcentration as measured by the
Herfindahl-Hirschman Index
P - ci
BQ
qi

P
P
Q
But BQ/P 1/? and qi/Q si
P - ci
si
so

?
P
Extending this we have
P - c
H

P
?
22
Misura della concentrazione
  • Le industrie presentano strutture molto
    differenti
  • Numero e distribuzione dimensionale delle imprese
  • cereali da colazione alta concentrazione
  • ristoranti bassa concentrazione
  • Come misurare la struttura di mercato
  • misura riassuntiva
  • la curva di concentrazione è possibile
  • preferenza per un numero singolo
  • Rapporto di concentrazione o Indice di
    Herfindahl-Hirschman

23
  • Indice di Herfindahl-Hirschman
  • Informazioni sulle quote di mercato di tutte le
    imprese e non solo di quelle più grandi.
  • HH ? si2
  • si quota di mercato impresa i-esima
  • Somma dei quadrati delle quote di mercato delle
    imprese del settore.

24
Misura della concentrazione
  • Confronto tra due diverse misure della
    concentrazione

Imprese Quota mercato Quota di
mercato ordinate () al
quadrato
1 25
25
625
2 25
25
625
3 25
25
625
4 5
5
25
5 5
25
6 5
25
7 5
25
8 5
25
CR4 80
Indice di concentrazione
HH 2.000
25
  • Lindice di concentrazione è influenzato da,
    esempio, fusioni

Imprese Quota mercato Quota di
mercato ordinate () al
quadrato
1 25
Esempio imprese 4 e 5 decidono di fondersi
25
Cambiamento quota di mercato
625
2 25
25
625
3 25
25
625
4 5
5
25



100
10
5 5
25
6 5
Lindice di concentrazione cambia
25
7 5
25
8 5
25
CR4 80
Indice di concentrazione
HH 2.000
85
2.050
26
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com