Title: Visualization Design Principles
1Visualization Design Principles
- cs5984 Information Visualization
- Chris North
2Quiz
- What is the purpose of visualization?
3Basic Visualization Model
Data
Visualization
Visual Mapping
Interaction
4Data Table
Attributes (aka dimensions, variables,
columns, )
- Data Values
- Data Types
- Quantitative
- Ordinal
- Categorical/Nominal
Items (aka cases, tuples, data points, rows, )
5Visual Mapping
- Map data items ? visual marks
- Visual marks
- Points
- Lines
- Areas
- Volumes
6Visual Mapping
- Map data items ? visual marks
- Map data item attributes ? visual mark
attributes - Visual mark attributes
- Position, x, y
- Size, length, area, volume
- Orientation, angle, slope
- Color, gray scale, texture
- Shape
7Example
- Hard drives for sale price (), capacity (MB),
quality rating (1-5)
C
Color rating
P
8Example Spotfire
- Film database
- Year ? X
- Length ? Y
- Popularity ? size
- Subject ? color
- Award? ? shape
9Ranking Visual Attributes
- Position
- Length
- Angle, Slope
- Size
- Color
Increased accuracy for quantitative data -W.S.
Cleveland
10Basic Visualization Model
- So far simple static charts
Data
Visualization
Visual Mapping
Interaction
- Most of semester
- more complex mappings
- interaction strategies
11Visualization Design Process
- Primary Inputs
- Data
- User Task
- Compare, known item search, patterns, outliers,
- Scale
- items
- attributes
- User characteristics
- Standards/guidelines
- System resources
- Bag of tricks
- View types
- Interaction strategies
Design
Visualization
12Issue Scale
- of attributes (dimensionality)
- of items
- of possible values (e.g. bits/value)
13Design Principles
- 5 HCI Metrics
- User performance
- Time, success rate, recovery, clicks, actions
- Learning time
- Error rate
- Retention time
- User satisfaction
14Cost of Knowledge
- Frequently accessed info should be quick
- Infrequently accessed info can be slow
15Increase Data Density
A pixel is a terrible thing to waste.
16Eliminate Chart Junk
- How much ink is used for non-data?
- Reclaim empty space ( screen empty)
- Attempt simplicity(e.g. am I using 3djust for
coolness?)
17Interactivity
- Interaction to handle increased scale
- Direct Manipulation
- Visual representation
- Rapid, incremental, reversible actions
- Pointing instead of typing
- Immediate, continuous feedback
- Encourage exploration
18Information Visualization Mantra
- Overview first, zoom and filter, then details on
demand - Overview first, zoom and filter, then details on
demand - Overview first, zoom and filter, then details on
demand - Overview first, zoom and filter, then details on
demand - Overview first, zoom and filter, then details on
demand - Overview first, zoom and filter, then details on
demand - Overview first, zoom and filter, then details on
demand - Overview first, zoom and filter, then details on
demand - Overview first, zoom and filter, then details on
demand - E.g. Spotfire
19The Insight Factor
- Avoid the temptation to design a form-based
search engine - More tasks than just search
- How do I know what to search for?
- What if theres something better that I dont
know to search for? - Hides the data
20Open your mind
- Think bigger, broader
- Does the design help me explore, learn,
understand? - Reveals the data
21Class Motto
22Information Types
- Multi-dimensional databases,
- 1D timelines,
- 2D maps,
- 3D volumes,
- Hierarchies/Trees directories,
- Networks/Graphs web, communications,
- Document collections digital libraries,
23Assignment Presentations
- Book Ch. 1, 3, 4
- Read for Tues
- Inselberg Multidimensional detective (parallel
coordinates) - ganesh, christa
- Kandogan Star Coordinates
- rohit, david
- Read for Thurs
- Rao Table Lens
- harsha, vishal
- Keim VisDB
- ming, binli
24Homework 1
- Due Sept 6 (1 week)
- Data
- Eye-tracking data
- Web logs
- Multi-D engineering data
- Bio-informatics?
- User study data
- GTA Purvi
- Demos in 104c Friday 4pm
- Available in 104c F,M-W 4-7pm
25Projects
26Presentations
- Mapping
- Show pictures / demo / video
- Strengths, weaknesses
- Hci metrics, insight factor