Visualization Design Principles

1 / 26
About This Presentation
Title:

Visualization Design Principles

Description:

cases, tuples, data points, rows, ...) Data Values. Data Types: Quantitative. Ordinal. Categorical/Nominal. Visual Mapping. Map: data items visual marks. Visual marks: ... – PowerPoint PPT presentation

Number of Views:95
Avg rating:3.0/5.0
Slides: 27
Provided by: chris78

less

Transcript and Presenter's Notes

Title: Visualization Design Principles


1
Visualization Design Principles
  • cs5984 Information Visualization
  • Chris North

2
Quiz
  • What is the purpose of visualization?

3
Basic Visualization Model
Data
Visualization
Visual Mapping
Interaction
4
Data Table
Attributes (aka dimensions, variables,
columns, )
  • Data Values
  • Data Types
  • Quantitative
  • Ordinal
  • Categorical/Nominal

Items (aka cases, tuples, data points, rows, )
5
Visual Mapping
  • Map data items ? visual marks
  • Visual marks
  • Points
  • Lines
  • Areas
  • Volumes

6
Visual Mapping
  • Map data items ? visual marks
  • Map data item attributes ? visual mark
    attributes
  • Visual mark attributes
  • Position, x, y
  • Size, length, area, volume
  • Orientation, angle, slope
  • Color, gray scale, texture
  • Shape

7
Example
  • Hard drives for sale price (), capacity (MB),
    quality rating (1-5)

C
Color rating
P
8
Example Spotfire
  • Film database
  • Year ? X
  • Length ? Y
  • Popularity ? size
  • Subject ? color
  • Award? ? shape

9
Ranking Visual Attributes
  • Position
  • Length
  • Angle, Slope
  • Size
  • Color

Increased accuracy for quantitative data -W.S.
Cleveland
10
Basic Visualization Model
  • So far simple static charts

Data
Visualization
Visual Mapping
Interaction
  • Most of semester
  • more complex mappings
  • interaction strategies

11
Visualization Design Process
  • Primary Inputs
  • Data
  • User Task
  • Compare, known item search, patterns, outliers,
  • Scale
  • items
  • attributes
  • User characteristics
  • Standards/guidelines
  • System resources
  • Bag of tricks
  • View types
  • Interaction strategies

Design
Visualization
12
Issue Scale
  • of attributes (dimensionality)
  • of items
  • of possible values (e.g. bits/value)

13
Design Principles
  • 5 HCI Metrics
  • User performance
  • Time, success rate, recovery, clicks, actions
  • Learning time
  • Error rate
  • Retention time
  • User satisfaction

14
Cost of Knowledge
  • Frequently accessed info should be quick
  • Infrequently accessed info can be slow

15
Increase Data Density
  • Calculate data/pixel

A pixel is a terrible thing to waste.
16
Eliminate Chart Junk
  • How much ink is used for non-data?
  • Reclaim empty space ( screen empty)
  • Attempt simplicity(e.g. am I using 3djust for
    coolness?)

17
Interactivity
  • Interaction to handle increased scale
  • Direct Manipulation
  • Visual representation
  • Rapid, incremental, reversible actions
  • Pointing instead of typing
  • Immediate, continuous feedback
  • Encourage exploration

18
Information Visualization Mantra
  • Overview first, zoom and filter, then details on
    demand
  • Overview first, zoom and filter, then details on
    demand
  • Overview first, zoom and filter, then details on
    demand
  • Overview first, zoom and filter, then details on
    demand
  • Overview first, zoom and filter, then details on
    demand
  • Overview first, zoom and filter, then details on
    demand
  • Overview first, zoom and filter, then details on
    demand
  • Overview first, zoom and filter, then details on
    demand
  • Overview first, zoom and filter, then details on
    demand
  • E.g. Spotfire

19
The Insight Factor
  • Avoid the temptation to design a form-based
    search engine
  • More tasks than just search
  • How do I know what to search for?
  • What if theres something better that I dont
    know to search for?
  • Hides the data

20
Open your mind
  • Think bigger, broader
  • Does the design help me explore, learn,
    understand?
  • Reveals the data

21
Class Motto
  • Show me the data!

22
Information Types
  • Multi-dimensional databases,
  • 1D timelines,
  • 2D maps,
  • 3D volumes,
  • Hierarchies/Trees directories,
  • Networks/Graphs web, communications,
  • Document collections digital libraries,

23
Assignment Presentations
  • Book Ch. 1, 3, 4
  • Read for Tues
  • Inselberg Multidimensional detective (parallel
    coordinates)
  • ganesh, christa
  • Kandogan Star Coordinates
  • rohit, david
  • Read for Thurs
  • Rao Table Lens
  • harsha, vishal
  • Keim VisDB
  • ming, binli

24
Homework 1
  • Due Sept 6 (1 week)
  • Data
  • Eye-tracking data
  • Web logs
  • Multi-D engineering data
  • Bio-informatics?
  • User study data
  • GTA Purvi
  • Demos in 104c Friday 4pm
  • Available in 104c F,M-W 4-7pm

25
Projects
  • Proposal due Sept 13

26
Presentations
  • Mapping
  • Show pictures / demo / video
  • Strengths, weaknesses
  • Hci metrics, insight factor
Write a Comment
User Comments (0)