Title: Consistent Visual Information Processing
1Consistent Visual Information Processing
Axel Pinz EMT Institute of Electrical
Measurement and Measurement Signal
Processing TU Graz Graz University of
Technology pinz_at_emt.tu-graz.ac.at http//www.emt.
tu-graz.ac.at/pinz
2Consistency
- Active vision systems / 4D data streams
- Multiple visual information
3This Talk Consistency in
- Active vision systems
- Active fusion
- Active object recognition
- Immersive 3D HCI
- Augmented reality
- Tracking in VR/AR
4AR as Testbed
- Consistent perception
- in 4D
- Space
- Registration
- Tracking
- Time
- Lag-free
- Prediction
5Agenda
- Active fusion
- Consistency
- Applications
- Active object recognition
- Tracking in VR/AR
- Conclusions
6Active Fusion
Simple top level decision-action-fusion loop
7Active Fusion (2)
- Fusion schemes
- Probabilistic
- Possibilistic (fuzzy)
- Evidence theoretic (Dempster Shafer)
8Probabilistic Active Fusion
N measurements, sensor inputs mi
M hypotheses oj , O o1, , oM
Bayes formula
Use entropy H(O) to measure the quality of P(O)
9Probabilistic Active Fusion (2)
Flat distribution P(oj )const. ? Hmax
Pronounced distribution P(oc ) 1 P(oj )
0, j ? c ? H 0
- Measurements can be
- difficult,
- expensive,
- N can be prohibitively large,
- ? Find iterative strategy to minimize H(O)
10Probabilistic Active Fusion (3)
Start with A ? 1 measurements P(ojm1, ,mA),
HA
Iteratively take more measurements mA1, ,mB
Until P(ojm1, ,mB), HB ? Threshold
11Summary Active Fusion
- Multiple (visual) information, many sensors,
measurements, - Selection of information sources
- Maximize information content / quality
- Optimize effort (number / cost of measurements, )
Information gain by entropy reduction
12Summary Active Fusion (2)
- Active systems (robots, mobile cameras)
- Sensor planning
- Control
- Interaction with the scene
- Passive systems (video, wearable,)
- Filtering
- Selection of sensors / measurements
13Consistency
- Consistency vs. Ambiguity
- Unimodal subsets Ok
- Representations
- Distance measures
14Consistent Subsets
- Hypotheses O o1 ,, oM
- Ambiguity P(O) is multimodal
- Consistent unimodal subsets Ok ? O
- Application domains
- Support of hypotheses
- Outlier rejection
Benefits
15Distance Measures
- Depend on representations, e.g.
- Pixel-level SSD, correlation, rank
- Eigenspace Euclidean
- 3D models Euclidean
- Feature-based Mahalanobis,
- Symbolic Mutual information
- Graphs Subgraph isomorphism
16Mutual Information
Shannons measure of mutual information O o1
,, oM A ? O, B ? O I(A,B) H(A) H(B)
H(A,B)
17Applications
- Active object recognition
- Videos
- Details
- Tracking in VR / AR
- Landmark definition / acquisition
- Real-time tracking
18Active vision laboratory
19Active Object Recognition
20Active Object Recognitionin Parametric Eigenspace
- Classifier for a single view
- Pose estimation per view
- Fusion formalism
- View planning formalism
- Estimation of object appearance at unexplored
viewing positions
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25(No Transcript)
26(No Transcript)
27(No Transcript)
28Applications
- ? Active object recognition
- Videos
- Details
- ? Control of active vision systems
- Tracking in VR / AR
- Landmark definition / acquisition
- Real-time tracking
- ? Selection, combination, evaluation
- ? Constraining of huge spaces
29Landmark Definition / Acquisition
corners
blobs
natural landmarks
30Automatic Landmark Acquisition
- Capture a dataset of the scene
- calibrated stereo rig
- trajectory (by magnetic tracking)
- n stereo pairs
- Process this dataset
- visually salient landmarks for tracking
31Automatic Landmark Acquisition
- visually salient landmarks for tracking
- salient points in 2D image
- 3D reconstruction
- clusters in 3D
- compact, many points
- consistent feature descriptions
- cluster centers ? landmarks
32Processing Scheme
33Office Scene
34Office Scene - Reconstruction
35Office Scene - Reconstruction
36Unknown Scene
Landmark Acquisition
Real-Time Tracking
37Real-Time Tracking
- Measure position and orientation of object(s)
- Obtain trajectories of object(s)
- Stationary observer outside-in
- Vision-based
- Moving observer, egomotion inside-out
- Hybrid
- Degrees of Freedom DoF
- 3 DoF (mobile robot)
- 6 DoF (head and device tracking in AR)
38Outside-in Tracking (1)
stereo-rig IR-illumination
- wireless
- 1 marker/device
- 3 DoF
- 2 markers 5 DoF
- 3 markers 6 DoF
devices
39Outside-inTracking (2)
40Consistent Tracking (1)
- Complexity
- Many targets
- Exhaustive search vs. Real-time
- Occlusion
- Redundancy (targets cameras)
- Ambiguity in 3D
- Constraints
41Consistent Tracking (2)
- Dynamic interpretation tree
- Geometric / spatial consistency
- Local constraints
- Multiple interpretations can happen
- Global consistency is impossible
- Temporal consistency
- Filtering, prediction
42Consistent Tracking (3)
43(No Transcript)
44(No Transcript)
45Hybrid Inside-Out Tracking (1)
Inertial Tracker
- 3 accelerometers
- 3 gyroscopes
- signal processing
- interface
46Hybrid Inside-Out Tracking (2)
- complementary sensors
- fusion
47Summary Consistency in
- Active vision systems
- Active fusion
- Active object recognition
- Immersive 3D HCI
- Augmented reality
- Tracking in VR/AR
48Conclusion
Consistent processing of visual information can
significantly improve the performance of active
and real-time vision systems
49Acknowledgement
Thomas Auer, Hermann Borotschnig, Markus
Brandner, Harald Ganster, Peter Lang, Lucas
Paletta, Manfred Prantl, Miguel Ribo, David
Sinclair
Christian Doppler Gesellschaft, FFF, FWF, Kplus
VRVis, EU TMR Virgo