Spectroscopy of the heaviest Nuclei - PowerPoint PPT Presentation

1 / 33
About This Presentation
Title:

Spectroscopy of the heaviest Nuclei

Description:

R-D Herzberg. 252,253,254No. 250Fm. Spectroscopy of the ... c.f. Eddie Parr talk today. Gamma Rays. Conversion Electrons. R-D Herzberg. Internal Conversion ... – PowerPoint PPT presentation

Number of Views:44
Avg rating:3.0/5.0
Slides: 34
Provided by: RDH0
Category:

less

Transcript and Presenter's Notes

Title: Spectroscopy of the heaviest Nuclei


1
Spectroscopy of the heaviest Nuclei
2
Overview
  • Transfermium Nuclei
  • Internal Conversion
  • In-beam g and CE spectroscopy
  • 253No
  • The SAGE Spectrometer

3
Shell Positions for 298114
From M. Bender et al., PRC 60 (1999) 034304
R-D Herzberg
4
Deformed orbitals
Problems No gap at Z100 or 102 No gap at
N152 Trace to position of high-j Orbitals? p
i13/2 n j15/2
M Bender, e.g. in A. Chatillon et al, EPJA30,
06, 397
R-D Herzberg
5
Different Skyrme Forces
  • Nuclear EOS from 18 different Skyrme
    parametrisations
  • All agree around nuclear density

S. Typel, B.A. Brown, PRC 64 027302.
r0 0.16 fm-3
Neutron density
R-D Herzberg
6
Today
RDH PTG, Prog Part Nucl Phys 61 (2008) 674
7
Experimental Tools
  • Decay spectroscopy
  • In-beam spectroscopy
  • c.f. Eddie Parr talk today
  • Gamma Rays
  • Conversion Electrons

R-D Herzberg
8
Systematics Z99 Es
F.P. Hessberger et al., EPJA 26 (2005) 233
9
Single particle Z99
7/2 ? 3/2- ?
10
Neutrons e.g. N149
c.f. TASIspec Poster LL Andersson
11
Experimental Tools
  • Decay spectroscopy
  • In-beam spectroscopy
  • c.f. Eddie Parr talk today
  • Gamma Rays
  • Conversion Electrons

12
Internal Conversion
13
Spectrum
14
Conversion Coefficients
103 102 10 1 0.1 10-2
Z100
M1 K E2 K
e- dominate
alpha
a 1
g dominate
100 200 300
400 500
15
Conversion Coefficients
Absolute
Normalised
E 200 keV Z 102 BrICC (T. Kibédi et
al., NIMA 589 (2008) 202)
16
Advantages of ICE
  • Multipolarity and Parity directly observable from
    subshell ratios
  • Mixing ratios directly accessible
  • Low energy transitions observable

17
253No 151 neutrons
  • Ground state 9/2-
  • Excited state 7/2
  • Rotational band observed at Gammasphere,
    assigned 7/2

9/2-734 7/2624
R. Chasman et al, Rev Mod Phys 49 (1977) 833.
18
253No Gammasphere
P. Reiter, PRL 95 (05) 032501
19
253No Jurogam
11400 Recoils
20
Levelscheme
S. Moon, PhD thesis
EPJA submitted
21
SACRED Data
T. Page, PhD thesis
1840(40) Recoils
22
Moment of Inertia
M. Bender et al., Skyrme-HFB priv. comm.
23
Conclusions
  • Observed band is built on g.s. 9/2-734
  • Branching ratios were key
  • Electron Spectroscopy is possible
  • No band built on 7/2 observed (yet)

24
SAGE
25
SAGE and JUROGAM II
26
SAGE
Ge opening angles
Beam
27
Shielding
BT
  • Photomultiplier tubes are sensitive to magnetic
    fields
  • Shields Weaken
  • redirect stray magnetic field

28
Capability
  • 106 Chn Ge _at_ 30-50 kHz
  • 90 Chn Si _at_ 30-50 kHz
  • Triggerless TDR DAQ
  • no common dead time!
  • No bottlenecks

29
Digital Electronics
50 kHz
40 kHz
30 kHz
20 kHz
10 kHz
Early implementation still needs pileup and
Compton Suppression
30
Experiments
  • SHE
  • 253No, 251Md, 255Lr,
  • 254No, 256Rf,
  • Shape Coexistence
  • 184-190Pb, 180-188Hg, light Po,Bi etc
  • E0 from multiphonon states
  • Etc

31
SAGE
Status April 2nd
Philippos Juha Janne
32
Summary
  • Combined Electron and Gamma Ray spectroscopy is a
    very powerful tool
  • The SAGE Spectrometer will be commissioned in the
    summer
  • Experiments welcome in the September PAC!

33
SAGE Collaboration
  • University of Liverpool, UK
  • R.-D. Herzberg, J. Pakarinen, P. Papadakis,
  • L.L. Andersson, P.A. Butler, R.D. Page,
  • J.R. Cresswell, D.A. Seddon, J. Thornhill,
  • D. Wells
  • University of Jyväskylä, Finland
  • P.T. Greenlees, P. Jones, R. Julin,
  • P. Rahkila, J. Sorri
  • STFC Daresbury Laboratory, UK
  • J. Simpson, P.J. Coleman-Smith,
  • I.H. Lazarus, S.C. Letts, V.F.E. Pucknell
Write a Comment
User Comments (0)
About PowerShow.com