Title: Statistical Modeling
1Statistical Modeling
2Purpose
- Statistical modeling is a mathematical technique
used to verify and quantify associations between
one or more quantitative and/or qualitative
predictor variables (x1, x2, ), and a single
quantitative or qualitative response variable
(y), or multiple multivariate normal response
variables (y1, y2, ). E.g., the association
between income (x1), whether or not someone at
home cooks (x2), and the number of dinners in the
last k eaten outside the home (y).
3Components
- Probability Model f (y, ?)
- Discrete Bernoulli, Binomial, Poisson,
Multinomial - Continuous Normal, Weibull, Multivariate
Normal - Linear Model ß0 ß1x1i ß2x2i
- Link ?i g (ß0 ß1x1i ß2x2i )
4Components
- Maximum Likelihood Estimation
- Likelihood Ratio Tests
5Probability Models
- Suppose there is a 6 week experiment with 15
animals in treatment group A and 15 animals in
treatment group B. Consider the following
measurements on each animal - Whether or not there were malignant tumors.
- The number of tumors that were malignant.
- The number of tumors.
- The average size of the tumors.
- The time to the first tumor.
- The number of tumors that were malignant,
benign, or other. - The average size and average weight of the
tumors. - The corresponding probability models are
Bernoulli, Binomial, Poisson, Normal, Weibull,
Multinomial, and Multivariate Normal.
6Statistical Modeling
- Bernoulli Modeling
- Binomial Modeling
- Binomial Probit Modeling
- Binomial C-Log-Log Modeling
- Poisson Modeling
- Poisson Rate Modeling
- Multinomial Modeling
- Multinomial Ordinal Modeling
7Statistical Modeling
- Normal Modeling
- Weibull Modeling
- Weibull Censor Modeling
- Multivariate Normal Modeling
- Multivariate Normal RM Modeling
8Bernoulli Modeling
9Bernoulli Modeling
10Bernoulli Modeling
11Bernoulli Modeling
12Bernoulli Modeling
13Bernoulli Modeling
14Bernoulli Modeling
15Bernoulli Modeling
16Binomial Modeling
17Binomial Modeling
18Binomial Modeling
19Binomial Modeling
20Binomial Modeling
21Binomial Modeling
22Binomial Modeling
23Binomial Probit Modeling
24Binomial Probit Modeling
25Binomial Probit Modeling
26Binomial Probit Modeling
27Binomial C-Log-Log Modeling
28Binomial C-Log-Log Modeling
29Binomial C-Log-Log Modeling
30Binomial C-Log-Log Modeling
31Poisson Modeling
32Poisson Modeling
33Poisson Modeling
34Poisson Modeling
35Poisson Modeling
36Poisson Modeling
37Poisson Modeling
38Poisson Modeling
39Poisson Modeling
40Poisson Modeling
41Poisson Modeling
42Poisson Rate Modeling
43Poisson Rate Modeling
44Poisson Rate Modeling
45Poisson Rate Modeling
46Poisson Rate Modeling
47Poisson Rate Modeling
48Poisson Rate Modeling
49Poisson Rate Modeling
50Poisson Rate Modeling
51Multinomial Modeling
52Multinomial Modeling
53Multinomial Modeling
54Multinomial Modeling
55Multinomial Modeling
56Multinomial Modeling
57Multinomial Modeling
58Multinomial Modeling
59Multinomial Ordinal Modeling
60Multinomial Ordinal Modeling
61Multinomial Ordinal Modeling
62Multinomial Ordinal Modeling
63Multinomial Ordinal Modeling
64Multinomial Ordinal Modeling
65Multinomial Ordinal Modeling
66Normal Modeling
67Normal Modeling
68Normal Modeling
69Normal Modeling
70Normal Modeling
71Normal Modeling
72Weibull Modeling
73Weibull Modeling
74Weibull Modeling
75Weibull Modeling
76Weibull Modeling
77Weibull Modeling
78Weibull Censor Modeling
79Weibull Censor Modeling
80Weibull Censor Modeling
81Weibull Censor Modeling
82Weibull Censor Modeling
83Weibull Censor Modeling
84Multivariate Normal Modeling
85Multivariate Normal Modeling
86Multivariate Normal Modeling
87Multivariate Normal Modeling
88Multivariate Normal Modeling
89Multivariate Normal Modeling
90Multivariate Normal Modeling
91Multivariate Normal RM Modeling
92Multivariate Normal RM Modeling
93Multivariate Normal RM Modeling
94Multivariate Normal RM Modeling
95Multivariate Normal RM Modeling
96Multivariate Normal RM Modeling
97Multivariate Normal RM Modeling
98Multivariate Normal RM Modeling
99Multivariate Normal RM Modeling
100References
- Statistics for Business and Economics (9th
Edition) by Andersen, Sweeney, and Williams (ISBN
0-324-20082-X). - Applied Linear Statistical Models (4th Edition)
by Neter, Kutner, Nachtsheim, and Wasserman (ISBN
0-256-11736-5). - Applied Multiple Regression/Correlation Analysis
(3rd Edition) by Cohen, Cohen, West, and Aiken
(ISBN 0-8058-2223-2). - An Introduction to Categorical Data Analysis by
Agresti (ISBN 0-471-11338-7). - Categorical Data Analysis (2nd Edition) by
Agresti (ISBN 0-471-36093-7). - Statistical Models and Methods for Lifetime Data
(2nd Edition) by Lawless (ISBN 0-471-37215-3). - Applied Multivariate Statistical Analysis (5th
Edition) by Johnson and Wichern (ISBN
0-13-092553-5). - Generalized Linear Models (2nd Edition) by
McCullagh and Nelder (ISBN 0-412-31760-5).