Title: The Cellulose Nanocrystal Electro-optic Effect
1The Cellulose Nanocrystal Electro-optic Effect
- Chad Teters, Wei Kong, Melissa Taylor, John
Simonsen, Mike Lerner, Tom Plant, Glenn Evans - Oregon State University
- Corvallis, Oregon
2PRESENTATION OVERVIEW
- Cellulose nanocrystals (CNXLs)
- Production
- Properties
- Transient electric birefringence (TEB)
- Alignment
- Optical effects
- Multi-order rotation
- Device fabrication
- issues
3Cellulose
4CELLULOSE NANOCRYSTAL PRODUCTION
- Native cellulose - Semi crystalline Polymer (70
crystalline).
Amorphous portion
Crystalline portion
CONTROLLED ACID HYDROLYSIS
5TEM image of cellulose nanocrystals
6(No Transcript)
7(No Transcript)
8 7 nm
9150 nm
10SOURCES OF CELLULOSE NANOCRYSTALS CELLULOSE
WHISKERSCELLULOSE NANOWHISKERSCELLULOSE
CRYSTALLITES
11Wood
12Sugar Beets
13Cotton
14Barnacles (tunicin)
15Bacterial Cellulose
16CELLULOSE BIOSYNTHESIS
R.M. Brown, 1996. J. Mat. Sci. Pure Appl.
Chem. A33(10) 1345-1373
17Slide from Wankei Wan, U. W. Ontario, London, ON,
Canada
18CELLULOSE NANOCRYSTALS
Beck-Candanedo, et. al. Biomacromol. (2005)
61048-1054
19Surface Area
m2/g
http//www.jm.com/engineered_products/filtration/
products/microfiber.pdf Winter, W.
presentation at ACS meeting, San Diego, March
2005 http//www.ipme.ru/e-journals/RAMS/no_5503
/staszczuk/staszczuk.pdf.
20MECHANICAL PROPERTIES
- Marks, Cell wall mechanics of tracheids 1967
- Sturcova, et al. (2005) Biomacromol. 6, 1055
- Yu, et al Science (2000) 287, 637
21OPTICS
22TRANSIENT ELECTRIC BIREFRINGENCE, AKA THE KERR
EFFECT
- Crossed polarizers typically emit no light
- Unless an optically active substance rotates the
light - Electric field can align birefringent substances
and allow light to pass polarizers - Kerr cells, Pokels cells used in fiber optics,
lasers, confocal microscopy, etc.
23Original Kerr Cell 1875
Optically active medium glass
from Kelvin's Instruments and the Kelvin Museum
by G. Green and J. T. Lloyd
http//www.elec.gla.ac.uk/groups/opto/Kerr.html
24KERR CELL
http//www.photonics.com/dictionary/images/terms/k
errcell.gif
25SETUP
26(No Transcript)
27(No Transcript)
28BASIC DETECTION THEORY
29ALIGNMENT THEORY (STATIC FIELD)
30ALIGNMENT THEORY (STATIC FIELD)
31Alignment Theory (static field)
32ALIGNMENT THEORY (T-DEPENDENT FIELD)
Growth
Decay
33EMPIRICAL FIT
decay
rise
on
off
34ALIGNMENT THEORY (FITTING PARAMETERS)
fast
slow
35CNXL RESULTS (E FIELD DEPENDENCE)
36CNXL RESULTS (CONC. DEPENDENCE)
37KERR CELL COMPARISON
38CNXL RESULTS (MULTI-ORDER ROTATION)
39CNXL RESULTS (MULTI-ORDER ROTATION)
40CNXL RESULTS (MULTI-ORDER ROTATION)
41CNXL RESULTS (MULTI-ORDER ROTATION)
42CNXL RESULTS (MULTI-ORDER ROTATION)
43WAVE PLATE OPTICS
Kerr equation
G phase shift n refractive index d
pathlength ? wavelength
n refractive index K Kerr constant ?
wavelength E electric field strength
K f(concentration) K C Linearity is an
assumption
44APPLICATIONS
- Display devices
- Privacy glass
- Electrically variable waveplate for microscopy,
general optics - ???
45SCHEMATIC OF LIQUID CRYSTAL DISPLAY
46TRANSMITTANCE OF CNXL DISPERSION
47CNXL vs LCD
48CNXL CHALLENGES
- Colloid stability
- Conductivity, Joule heating
- Scattering
- Field direction in plane switching
49CONCLUSIONS
- Cellulose nanoparticle dispersions exhibit a
strong electro-optic effect - Effect dependent on square of field strength,
concentration, path length, surface chemistry - Device geometry requires in-plane switching
- CNXL dispersions hold the potential for
electro-optic applications in a variety of fields
and devices