Fusion - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

Fusion

Description:

Des signaux issus de capteurs divers, Des parametres mesures sur ces signaux, ... quant. Dictionnaire locuteur 1. Dictionnaire locuteur 2. Dictionnaire locuteur n ' ... – PowerPoint PPT presentation

Number of Views:105
Avg rating:3.0/5.0
Slides: 30
Provided by: grardc
Category:
Tags: fusion | quant

less

Transcript and Presenter's Notes

Title: Fusion


1
Fusion
Gérard CHOLLETchollet_at_tsi.enst.fr GET-ENST/CNRS-
LTCI46 rue Barrault75634 PARIS cedex
13http//www.tsi.enst.fr/chollet
2
Plan
  • Motivations, Applications
  • Reconnaissance de formes
  • Multi-capteurs
  • Rehaussement du signal
  • Parametres
  • Scores
  • Decisions
  • Conclusions
  • Perspectives

3
Introduction
  • Reconnaissance des formes
  • Pourquoi fusionner ?
  • Que fusionner ?
  • Des signaux issus de capteurs divers,
  • Des parametres mesures sur ces signaux,
  • Des scores calculés par des classificateurs,
  • Des decisions prises par des classificateurs
  • Comment fusionner ?

4
Reconnaissance de formes
5
Fusion de signaux
  • Nombre de capteurs
  • Types de capteurs
  • Identiques ?
  • Nombre de sources
  • Exemples
  • Réseaux de microphones
  • Stérovision
  • Seïsmographe

6
Fusion de paramètres
  • Issus dun seul capteur
  • Issus de plusieurs capteurs
  • Modèles multi-flux
  • Exemples
  • Reconnaissance de la parole
  • Réseaux bayésiens

7
Fusion de scores
8
Fusion de décisions
9
Vector Quantization (VQ)
SOONG, ROSENBERG 1987
10
Hidden Markov Models (HMM)
ROSENBERG 1990, TSENG 1992
11
Ergodic HMM
PORITZ 1982, SAVIC 1990
12
Gaussian Mixture Models (GMM)
REYNOLDS 1995
13
HMM structure depends on the application
14
Gaussian Mixture Model
  • Parametric representation of the probability
    distribution of observations

15
Gaussian Mixture Models
8 Gaussians per mixture
16
Support Vector Machines and Speaker
Verification
  • Hybrid GMM-SVM system is proposed
  • SVM scoring model trained on development data to
    classify true-target speakers access and
    impostors access, using new feature
    representation based on GMMs

17
SVM principles
18
Results
19
Combining Speech Recognition and Speaker
Verification.
  • Speaker independent phone HMMs
  • Selection of segments or segment classes which
    are speaker specific
  • Preliminary evaluations are performed on the NIST
    extended data set (one hour of training data per
    speaker)
  • Some developments were done during a 6 weeks
    workshop (SuperSID) during summer 2002

20
SuperSID experiments
21
GMM with cepstral features
22
Selection of nasals in words in -ing
being everything getting anything thing something
things going
23
Fusion
24
Fusion results
25
Audio-Visual Identity Verification
  • A person speaking in front of a camera offers 2
    modalities for identity verification (speech and
    face).
  • The sequence of face images and the
    synchronisation of speech and lip movements could
    be exploited.
  • Imposture is much more difficult than with single
    modalities.
  • Many PCs, PDAs, mobile phones are equiped with a
    camera. Audio-Visual Identity Verification will
    offer non-intrusive security for e-commerce,
    e-banking,

26
Examples of Speaking Faces
Sequence of digits (PIN code)
Free text
27
Fusion of Speech and Face
(from thesis of Conrad Sanderson, aug. 2002)
28
An illustration
Insecure Network
Distant server
  • Access to private data
  • Secured transactions
  • Acquisition of biometric signals for each
    modality
  • Scores are computed for each modality
  • Fusion of scores and decision

29
Conclusions and Perspectives
  • Speech is often the only usable biometric
    modality (over the telephone network).
  • Interactive Voice Servers may use both text
    dependent and text independent approaches for
    improved verification accuracy.
  • Evaluation campaigns and research workshops are
    efficient means to stimulate progress.
  • Most PCs, PDAs and Mobile Phones will be equipped
    with cameras. Audio-Visual Identity Verification
    should find applications in e-Banking,
    e-Commerce, .
Write a Comment
User Comments (0)
About PowerShow.com