Quantum control using diabatic and adibatic transitions - PowerPoint PPT Presentation

About This Presentation
Title:

Quantum control using diabatic and adibatic transitions

Description:

The system: quasi-one-dimensional quantum dot with 2 e inside ... Quasi-one-dimensional quantum dot: Confining potential: doble quantum well. filled with 2 e ... – PowerPoint PPT presentation

Number of Views:41
Avg rating:3.0/5.0
Slides: 71
Provided by: dfU4
Category:

less

Transcript and Presenter's Notes

Title: Quantum control using diabatic and adibatic transitions


1
Quantum control using diabatic and adibatic
transitions
Diego A. Wisniacki
University of Buenos Aires
2
Colaboradores-Referencias
Colaborators
  • Gustavo Murgida (UBA)
  • Pablo Tamborenea (UBA)

  • Short version ---gt PRL 07, cond-mat/0703192
  • APS ICCMSE

3
Outline
  • Introduction
  • The system quasi-one-dimensional quantum dot
    with 2 e inside
  • Landau- Zener transitions in our system
  • The method traveling in the spectra
  • Results
  • Final Remarks

4
Introduction
5
Introduction
6
Introduction
Desired state
7
Introduction
Desired state
8
Introduction
  • Main idea of our work

9
Introduction
  • Main idea of our work

To travel in the spectra of eigenenergies
10
Introduction
  • Main idea of our work

To travel in the spectra of eigenenergies
11
Introduction
  • Main idea of our work

To travel in the spectra of eigenenergies
Control parameter
12
Introduction
  • Main idea of our work

To travel in the spectra of eigenenergies
Control parameter
13
Introduction
  • Main idea of our work

To travel in the spectra of eigenenergies
Control parameter
14
Introduction
  • Main idea of our work

To travel in the spectra of eigenenergies
Control parameter
15
Introduction
  • Main idea of our work

To travel in the spectra of eigenenergies
Control parameter
16
Introduction
  • To navigate the spectra

17
Introduction
  • To navigate the spectra

18
Introduction
  • To navigate the spectra

19
Introduction
  • To navigate the spectra

20
The system
Quasi-one-dimensional quantum dot
21
The system
Quasi-one-dimensional quantum dot
Confining potential doble quantum well
filled with 2 e
22
The system
Quasi-one-dimensional quantum dot
Confining potential doble quantum well
filled with 2 e
23
The system
Quasi-one-dimensional quantum dot
Confining potential doble quantum well
filled with 2 e
24
Colaboradores-Referencias
The system
The Hamiltonian of the system
Time dependent electric field
Coulombian interaction
Note no spin term-we assume total spin
wavefunction singlet
25
The system
Interaction induce chaos
PRE 01 Fendrik, Sanchez,Tamborenea
System 1 well, 2 e
Nearest neighbor spacing distribution
26
Colaboradores-Referencias
The system
  • We solve numerically the time independent
    Schroeringer eq.
  • Electric field is considered as a parameter
  • Characteristics of the spectrum (eigenfunctions
    and eigenvalues)

27
The system
Spectra
28
The system
Spectra
  • lines

29
The system
Spectra
  • lines
  • Avoided crossings

30
Colaboradores-Referencias
The system
Cero slope delocalized
Negative slope e in the left dot
Positive slope e in the right dot
31
Landau-Zener transitions in our model
LZ model
32
Landau-Zener transitions in our model
LZ model
Linear functions
33
Landau-Zener transitions in our model
LZ model
hyperbolas
Linear functions
34
Landau-Zener transitions in our model
LZ model
if
Probability to remain in the state 1
Probability to jump to the state 2
35
Landau-Zener transitions in our model
LZ model
Adibatic transitions
Diabatic transitions
36
Colaboradores-Referencias
Landau-Zener transitions in our model
We study the prob. transition in several ac. For
example
37
Colaboradores-Referencias
Landau-Zener transitions in our model
We study the prob. transition in several ac. For
example
38
Colaboradores-Referencias
Landau-Zener transitions in our model
We study the prob. transition in several ac. For
example
Full system
LZ prediction
2 level system
E(t)
39
Colaboradores-Referencias
Landau-Zener transitions in our model
We study the prob. transition in several ac. For
example
2 level system
Full system
40
The method navigating the spectrum
  • Choose the initial state and the desired final
    state in the spectra
  • Find a path in the spectra
  • Avoid adiabatic transitions in very small avoided
    crossings
  • We use adiabatic and rapid transitions to travel
    in the spectra
  • If it is posible try to make slow variations of
    the parameter

41
Results
  • First example localization of the e in the
    left dot

42
Results
  • First example localization of the e in the
    left dot

EPL 01 Tamborenea, Metiu (sudden switch method)
LL
43
Results
  • First example localization of the e in the
    left dot

EPL 01 Tamborenea, Metiu (sudden switch method)
44
Colaboradores-Referencias
Results
  • Second example complex path

45
Colaboradores-Referencias
Results
  • Second example complex path

46
Colaboradores-Referencias
Results
  • Second example complex path

47
Colaboradores-Referencias
Results
  • Second example complex path

48
Colaboradores-Referencias
Results
  • Second example complex path

49
Colaboradores-Referencias
Results
  • Second example complex path

50
Colaboradores-Referencias
Results
  • Second example complex path

51
Colaboradores-Referencias
Results
  • Second example complex path

52
Colaboradores-Referencias
Results
  • Second example complex path

53
Colaboradores-Referencias
Results
  • Second example complex path

54
Colaboradores-Referencias
Results
  • Second example complex path

55
Colaboradores-Referencias
Results
  • Third example more complex path

56
Results
57
Colaboradores-Referencias
Results
  • Forth example target state a coherent
    superposition

58
Colaboradores-Referencias
Results
  • Forth example target state a coherent
    superposition

59
Colaboradores-Referencias
Results
  • Forth example target state a coherent
    superposition

60
Colaboradores-Referencias
Results
  • Forth example target state a coherent
    superposition

61
Colaboradores-Referencias
Results
  • Forth example target state a coherent
    superposition

62
Colaboradores-Referencias
Results
  • Forth example target state a coherent
    superposition

63
Colaboradores-Referencias
Results
  • Forth example target state a coherent
    superposition

64
Colaboradores-Referencias
Results
  • Forth example target state a coherent
    superposition

65
Colaboradores-Referencias
The method questions
  • Is our method generic?

66
Colaboradores-Referencias
The method questions
  • Is our method generic?

We need well defined avoided crossings
67
Colaboradores-Referencias
The method questions
  • Is our method generic?

We need well defined avoided crossings
Stadium billiard
LZ transitions Sanchez, Vergini DW PRE 96
??a/R
68
Colaboradores-Referencias
The method questions
  • Is our method generic?

We need well defined avoided crossings
Stadium billiard
LZ transitions Sanchez, Vergini DW PRE 96
??a/R
  • Is our method experimentally possible?

69
Colaboradores-Referencias
Final Remarks
  • We found a method to control quantum systems
  • Our method works well
  • With our method it is posible to travel in the
    spectra of the system
  • We can control several aspects of the wave
    function
  • (localization of the e, etc).

70
Colaboradores-Referencias
Final Remarks
  • We can also obtain a combination of adiabatic
    states
  • Control of chaotic systems
  • Decoherence??? Next step???.
Write a Comment
User Comments (0)
About PowerShow.com