Title: Quantum control using diabatic and adibatic transitions
1Quantum control using diabatic and adibatic
transitions
Diego A. Wisniacki
University of Buenos Aires
2Colaboradores-Referencias
Colaborators
- Gustavo Murgida (UBA)
- Pablo Tamborenea (UBA)
- Short version ---gt PRL 07, cond-mat/0703192
- APS ICCMSE
3Outline
- Introduction
- The system quasi-one-dimensional quantum dot
with 2 e inside - Landau- Zener transitions in our system
- The method traveling in the spectra
- Results
- Final Remarks
4Introduction
5Introduction
6Introduction
Desired state
7Introduction
Desired state
8Introduction
9Introduction
To travel in the spectra of eigenenergies
10Introduction
To travel in the spectra of eigenenergies
11Introduction
To travel in the spectra of eigenenergies
Control parameter
12Introduction
To travel in the spectra of eigenenergies
Control parameter
13Introduction
To travel in the spectra of eigenenergies
Control parameter
14Introduction
To travel in the spectra of eigenenergies
Control parameter
15Introduction
To travel in the spectra of eigenenergies
Control parameter
16Introduction
17Introduction
18Introduction
19Introduction
20The system
Quasi-one-dimensional quantum dot
21The system
Quasi-one-dimensional quantum dot
Confining potential doble quantum well
filled with 2 e
22The system
Quasi-one-dimensional quantum dot
Confining potential doble quantum well
filled with 2 e
23The system
Quasi-one-dimensional quantum dot
Confining potential doble quantum well
filled with 2 e
24Colaboradores-Referencias
The system
The Hamiltonian of the system
Time dependent electric field
Coulombian interaction
Note no spin term-we assume total spin
wavefunction singlet
25The system
Interaction induce chaos
PRE 01 Fendrik, Sanchez,Tamborenea
System 1 well, 2 e
Nearest neighbor spacing distribution
26Colaboradores-Referencias
The system
- We solve numerically the time independent
Schroeringer eq. - Electric field is considered as a parameter
- Characteristics of the spectrum (eigenfunctions
and eigenvalues)
27The system
Spectra
28The system
Spectra
29The system
Spectra
30Colaboradores-Referencias
The system
Cero slope delocalized
Negative slope e in the left dot
Positive slope e in the right dot
31Landau-Zener transitions in our model
LZ model
32Landau-Zener transitions in our model
LZ model
Linear functions
33Landau-Zener transitions in our model
LZ model
hyperbolas
Linear functions
34Landau-Zener transitions in our model
LZ model
if
Probability to remain in the state 1
Probability to jump to the state 2
35Landau-Zener transitions in our model
LZ model
Adibatic transitions
Diabatic transitions
36Colaboradores-Referencias
Landau-Zener transitions in our model
We study the prob. transition in several ac. For
example
37Colaboradores-Referencias
Landau-Zener transitions in our model
We study the prob. transition in several ac. For
example
38Colaboradores-Referencias
Landau-Zener transitions in our model
We study the prob. transition in several ac. For
example
Full system
LZ prediction
2 level system
E(t)
39Colaboradores-Referencias
Landau-Zener transitions in our model
We study the prob. transition in several ac. For
example
2 level system
Full system
40The method navigating the spectrum
- Choose the initial state and the desired final
state in the spectra
- Find a path in the spectra
- Avoid adiabatic transitions in very small avoided
crossings
- We use adiabatic and rapid transitions to travel
in the spectra
- If it is posible try to make slow variations of
the parameter
41Results
- First example localization of the e in the
left dot
42Results
- First example localization of the e in the
left dot
EPL 01 Tamborenea, Metiu (sudden switch method)
LL
43Results
- First example localization of the e in the
left dot
EPL 01 Tamborenea, Metiu (sudden switch method)
44Colaboradores-Referencias
Results
- Second example complex path
45Colaboradores-Referencias
Results
- Second example complex path
46Colaboradores-Referencias
Results
- Second example complex path
47Colaboradores-Referencias
Results
- Second example complex path
48Colaboradores-Referencias
Results
- Second example complex path
49Colaboradores-Referencias
Results
- Second example complex path
50Colaboradores-Referencias
Results
- Second example complex path
51Colaboradores-Referencias
Results
- Second example complex path
52Colaboradores-Referencias
Results
- Second example complex path
53Colaboradores-Referencias
Results
- Second example complex path
54Colaboradores-Referencias
Results
- Second example complex path
55Colaboradores-Referencias
Results
- Third example more complex path
56Results
57Colaboradores-Referencias
Results
- Forth example target state a coherent
superposition
58Colaboradores-Referencias
Results
- Forth example target state a coherent
superposition
59Colaboradores-Referencias
Results
- Forth example target state a coherent
superposition
60Colaboradores-Referencias
Results
- Forth example target state a coherent
superposition
61Colaboradores-Referencias
Results
- Forth example target state a coherent
superposition
62Colaboradores-Referencias
Results
- Forth example target state a coherent
superposition
63Colaboradores-Referencias
Results
- Forth example target state a coherent
superposition
64Colaboradores-Referencias
Results
- Forth example target state a coherent
superposition
65Colaboradores-Referencias
The method questions
66Colaboradores-Referencias
The method questions
We need well defined avoided crossings
67Colaboradores-Referencias
The method questions
We need well defined avoided crossings
Stadium billiard
LZ transitions Sanchez, Vergini DW PRE 96
??a/R
68Colaboradores-Referencias
The method questions
We need well defined avoided crossings
Stadium billiard
LZ transitions Sanchez, Vergini DW PRE 96
??a/R
- Is our method experimentally possible?
69Colaboradores-Referencias
Final Remarks
- We found a method to control quantum systems
- With our method it is posible to travel in the
spectra of the system
- We can control several aspects of the wave
function - (localization of the e, etc).
70Colaboradores-Referencias
Final Remarks
- We can also obtain a combination of adiabatic
states
- Control of chaotic systems
- Decoherence??? Next step???.