A Generic Approach To Coregistration - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

A Generic Approach To Coregistration

Description:

Raster Image. Transformation (Groups) Similarity Measures ... Vector Raster registration (!) Expand Transformation Library. Speed / Initialisation ... – PowerPoint PPT presentation

Number of Views:132
Avg rating:3.0/5.0
Slides: 30
Provided by: caen3
Category:

less

Transcript and Presenter's Notes

Title: A Generic Approach To Coregistration


1
A Generic Approach ToCo-registration
  • Rik Fransens
  • Christoph Strecha
  • Geert Caenen

2
Co-registration
3
Mathematical Framework
  • Image
  • Raster Image
  • Transformation (Groups)
  • Similarity Measures

4
Mathematical Framework
  • Image I (x)
  • Raster Image
  • Transformation (Groups)
  • Similarity Measures

I (x,y)
x
y
5
Mathematical Framework
  • Image I (x)
  • Raster Image I i1 int
  • Transformation (Groups)
  • Similarity Measures

I (x,y)
x
y
6
Mathematical Framework
  • Image I (x)
  • Raster Image I i1 int
  • Transformation (Groups) T(xp)
  • Similarity Measures

7
Mathematical Framework
  • Image I (x)
  • Raster Image I i1 int
  • Transformation (Groups) T(xp)
  • Similarity Measures C(X,Y)

Image 2
Image 2
Image 2
Xi aYi b
p(Xi,Yi)
Xi Yi
Image 1
Image 1
Image 1
8
Mathematical Framework
  • Raster Images I1, I2 (resp. I1,I2)
  • Transformation type T(xp)
  • Similarity Measure C(X,Y)
  • F(p) C( I1, I2(T(xip)i )
  • MAX F(p)
  • dF/dp dC/dI2 dI2/dx dx/dp

9
Implementation
Library with Plug Play-support
10
Implementation
  • Optimisation
  • Multi-resolution
  • Deterministic / stochastic
  • Dense vs. subsampled

I1
I1(1)
I1(2)
T
T(2)
T(1)
I2
I2(1)
I2(2)
11
Implementation
  • Optimisation
  • Multi-resolution
  • Deterministic / stochastic
  • Dense vs. subsampled

p (pF)
?F(p)
p
p
12
Implementation
  • Optimisation
  • Multi-resolution
  • Deterministic / stochastic
  • Dense vs. subsampled

SSD ? Xi-Yi2
c ? Xi-Yi2
All pixels
Fewer pixels
13
Experiments
  • Ground-truth data

image
spectral noise
2?
pgt minp xdist,i-T(xip)2
14
Experiments
  • Quality of the result

15
Experiments
  • Quality of the result

16
Experiments
  • Quality of the result

17
Experiments
  • Influence of Geometric Distortion

18
Experiments
  • Influence of Spectral Noise

19
Experiments
  • Optimisation Speed

20
Experiments
  • Real Experiments image map registration

21
Experiments
  • Real Experiments optical flow

22
Experiments
  • Real Experiments linear spline

23
Experiments
  • Real Experiments linear spline

24
Experiments
  • Real Experiments change detection

SSD 1 - exp -yi-xi2/(2s2) NCC 1 -
exp -yi-axi-b2/(2s2) MI max
1-p(yixi) , 1-p(xiyi)
25
(No Transcript)
26
(No Transcript)
27
Summary Discussion
  • Mathematical Framework generic
  • Implementation modular, object-oriented
  • Similarity Measures
  • Transformations
  • Optimisation
  • Experiments
  • Ground-truth data subpixel convergence!
  • Photometric distortion deteriorates results
  • MI converges less accurately
  • Parametrisation of transformations is an issue.
    (scaling)
  • Real Data
  • Change detection

28
Summary Discussion
  • Future work
  • Framework Deterministic ? Probabilistic
  • Simultaneous Outlier Detection and registration
    (robust)
  • Links co-registration with MVstereo
  • Prior knowledge (intelligence)
  • Spatial coherence of outliers using MRFs
  • Vector Raster registration (!)
  • Expand Transformation Library
  • Speed / Initialisation
  • Biased subsampling ? Feature based
    co-registration
  • Initial registration
  • Parallel processing

29
Summary Discussion
Input 3 images                               
                              
                               Resultsvisibili
ty maps                               
                               depth and ideal
image                               
                              
Write a Comment
User Comments (0)
About PowerShow.com