Title: Design of Spatial Information Systems
1 DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF
JOENSUU JOENSUU, FINLAND
- Design of Spatial Information Systems
- Lecture 3
- Map Projections
- Alexander Kolesnikov
2Cartesian coordinates in 2-D space
Euclidean distance L between points P1 and P2
3Polar coordinates in 2-D space
y
r
?
x
Distance L between two points (r,?1) and (r,?2)
on a circle
4Cartesian coordinates in 3-D space
Euclidean distance L between points P1 and P2 in
Cartesian coordinates
5Spheric coordinates in 3-D space
6Distance between two points on a sphere
- Distance L between two points P1 (R,?1,?1) and
- P2(R,?2,?2) on a sphere in spherical
coordinates
Problems with this formula...
7Haversine formula for the distance
- Distance L between two points P1 (R,?1,?1) and
- P2(R,?2,?2) on a sphere in spherical
coordinates
We know the distance L, then how to define the
shortest path from the point (?1,?1) to point
(?1,?1)?
8Arc of the Great Circle
http//216.147.18.102/dist/index
9Transverse Cylindrical Projections
10Transverse Cylindrical Projections
- Mercator projection
- Tranverse Mercator projection (TM)
- Gauss-Krueger (GK) projection
- Universal Tranverse Mercator (UTM) projection
- KKJ
- YKJ
- EUROREF-FIN (after 2003)
11Mercator (after Gerardus Mercator) Map
Gerhard Kramer
1569 year
Mostly used for naval ocean navigation
12How to do?
Mercator
Read more
http//www.math.ubc.ca/israel/m103/mercator/
13Keep constant angle with the meridians
y
x
Coordinates x and y of a point on a Mercator map
from its longitude ? and latutude ?.
14Formula for the Mercator projection
?
90
y
-90
Coordinates x and y of a point on a Mercator map
from its longitude ? and latutude ?.
15The main property of Mercator map
Vancouver
Ruhmb line
Hawaii
16Problem with Mercator projection
- Greenland is presented as large as Africa.
- In fact Africa's area is 13 times that of
Greenland.
17Transverse Mercator (TM)
- A conformal cylindrical projection
- The accuracy of TM projections quickly decreases
from the - central meridian.
- Therefore the longitudinal extent of the
projected region is - restricted to 3? from the central meridian.
18Transverse Mercator (TM)
TM for one zone
TM for 2 zones
Each TM Zone is in fact a different
projection using a different system of
coordinates. Area, size, and angle distortions
are very small.
19Gauss-Krueger (GK)
- GK system using TM projections to map the world
into numerous standard zones that are 3? wide. - X-coordinate Northing
- Y-ccordinate Easting
- False Easting 500 000 m
- False Northing 0 m for Northern
hemisphere - 10 000 000 m for
Southern hemisphere - Scale factor 1.0
- Germany, Finland, USSR, Eastern Europe, South
America. - The European alternative to UTM
20Universal Transverse Mercator (UTM)
- The UTM system applies the TM projection to
mapping the - world, using 60 pre-defined standard zones.
- UTM zones are 6? wide.
- Each zone exists in a North and South variant.
- X-coordinate Northing
- Y-coordinate Easting
- False Easting 500 000 m
- False Northing 0 m for Northern
hemisphere - 10 000 000 m for
Southern hemisphere - Scale factor 0.9996
- The UTM is defined for areas between latitudes
80?S and 84?N.
21UTM Zone parameters
Zone width 6? Zone numbers 1..60 Central
meridians n?6?-183? Northern hemisphere
0?-84?N False Easting 500 000 m False
Northing 0 m Southern hemisphere
80?-0?S False Easting 500 000 m False
Northing 10 000 000 m Scale factor 0.9996 Two
undistorted meridians ?1?37
Why?
.
22UTM Zones
West Lon Zones 1..30 East Lon
Zones 31..60
23Irregularities in the UTM grid in Europe
UTM zones for Finland 34, 35 and 36.
24http//cs.joensuu.fi/koles/utm/
Geocoordinates 68?35.59 N
29?45.45 E UTM Zone 35 (Central meridian
27?) Easting 612 294.5 m Northing 7 611
714.9 m
25http//cs.joensuu.fi/koles/utm/
Geocoordinates 68?35.59 N
29?45.45 E UTM Zone 35 (Central meridian
27?) Easting 612 287.7 m Northing 7 611
515.8 m
Easting 612 294.5 m Northing 7 611 714.9 m
ED50
26Arc of the Great Circle or Rhumb Line?
http//216.147.18.102/dist/index
27Finnish national projection grids
- VVJ Vanha Valtion koordinaattijärjestelmä
- (Old Finnish National System), until 1970.
- KKJ Kartaskoordinaattijärjestelmä
- (Map Coordinate System)
- Peruskoordinaattisto
- or Basic Coordinate System
- YKJ Yhtenäiskoordinaattisto
- (Uniform Coordinate System)
- EURO-FIN (from 2003)
- EUROREF89
28VVJ Vanha Valtion koordinaattijärjestelmä
- Projection Transverse Mercator
- Grid Gauss-Krueger
- Reference ellipsoid Hayford 1909International
1924 - Scale factor 1
- In use from 1919 till 1970
29KKJ Basic coordinate system
Finland is divided into 4 projection zones of 3?
wide 21?E, 24?E, 27?E, and 30?E. Zones
1,2,3, and 4
Extended zones 18, 21, 24, 27, 30 ja
33 numbered from 0 to 5.
30KKJ Basic coordinate system
- Zones 1,2,3, and 4
- False Easting 500 000 m 500 km
- The ordinal number of Zone is added before the
actual - value of easting 1 500, 2 500, 3 500, and 4
500 km. - False Northing 0 m (Northern Hemisphere).
- Projection Transversal Mercator (Gauss-Krueger)
- Reference ellipsoid International 1924 (Hayford
1909) -
(a6378388, 1/f297.0) - Datum European 1950 (ED50)
- Scale factor 1.0
31YKJ Uniform coordinate system
- Finland is represented in one projecton zone.
- The central meridian is 27?E
- Projection Transverse Mercator (Gauss-Krueger)
- Reference ellipsoid International 1924
- (a6378388,
1/f297.0) - Datum European 1950 (ED50)
- Scale factor 1.0
32EUROREF-FIN
- Since 2003 year
- 3D geocentric
- Finland is represented in one projecton zone.
- The central meridian is 27?E
- Projection Universal Transverse Mercator
- Reference ellipsoid GRS1980
- (a6378137, 1/f298.257222101)
- Scale factor 0.9996
- Accuracy of realization few centimeters
33EUROREF89
- For GPS applications
- 3D geocentric
- Finland is represented in one projecton zone.
- The central meridian is 27?E
- Projection Universal Transverse Mercator
- Reference ellipsoid WGS84
- Scale factor 0.9996
34Projected coordinates conversion
Scheme of conversion for projected coordinates
from projection system S1 to projection system
S2 1) (X,Y)S1 ? (Latitude, Longitude) 2)
(Latitude, Longitude) ? (X,Y)S2
35Example KKJ ? YKJ
1) (Zone, N,E)KKJ ? (Latitude, Longitude) 2)
(Latitude, Longitude) ? (N,E)YKJ
361st step (N,E)KKJ ? (L,L)
Press
372nd step (L,L) ? (N,E)YKJ
Press
38Result (Zone,N,E)KKJ ? (N,E)YKJ
KKJ
YKJ
39Example KKJ (ED50) ? UTM (WGS84)
1) (Zone, N,E)KKJ ? (Latitude, Longitude) 2)
(Latitude, Longitude) ? (Zone,N,E)UTM
40Conversion (N,E)KKJ ?(L,L) ? (N,E)UTM
1
1
4
2
2
4
3
3
KKJ
UTM