Design of Spatial Information Systems - PowerPoint PPT Presentation

1 / 40
About This Presentation
Title:

Design of Spatial Information Systems

Description:

Polar coordinates in 2-D space. Distance L between two points (r, 1) and (r, ... Cartesian ... of the Great Circle or Rhumb Line? http://216.147.18.102 ... – PowerPoint PPT presentation

Number of Views:152
Avg rating:3.0/5.0
Slides: 41
Provided by: Jus6
Category:

less

Transcript and Presenter's Notes

Title: Design of Spatial Information Systems


1
DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF
JOENSUU JOENSUU, FINLAND
  • Design of Spatial Information Systems
  • Lecture 3
  • Map Projections
  • Alexander Kolesnikov

2
Cartesian coordinates in 2-D space
Euclidean distance L between points P1 and P2
3
Polar coordinates in 2-D space
y
r
?
x
Distance L between two points (r,?1) and (r,?2)
on a circle
4
Cartesian coordinates in 3-D space
Euclidean distance L between points P1 and P2 in
Cartesian coordinates
5
Spheric coordinates in 3-D space
6
Distance between two points on a sphere
  • Distance L between two points P1 (R,?1,?1) and
  • P2(R,?2,?2) on a sphere in spherical
    coordinates

Problems with this formula...
7
Haversine formula for the distance
  • Distance L between two points P1 (R,?1,?1) and
  • P2(R,?2,?2) on a sphere in spherical
    coordinates

We know the distance L, then how to define the
shortest path from the point (?1,?1) to point
(?1,?1)?
8
Arc of the Great Circle
http//216.147.18.102/dist/index
9
Transverse Cylindrical Projections
10
Transverse Cylindrical Projections
  • Mercator projection
  • Tranverse Mercator projection (TM)
  • Gauss-Krueger (GK) projection
  • Universal Tranverse Mercator (UTM) projection
  • KKJ
  • YKJ
  • EUROREF-FIN (after 2003)

11
Mercator (after Gerardus Mercator) Map

Gerhard Kramer
1569 year
Mostly used for naval ocean navigation
12
How to do?
Mercator
Read more
http//www.math.ubc.ca/israel/m103/mercator/
13
Keep constant angle with the meridians
y
x
Coordinates x and y of a point on a Mercator map
from its longitude ? and latutude ?.
14
Formula for the Mercator projection
?
90
y
-90
Coordinates x and y of a point on a Mercator map
from its longitude ? and latutude ?.
15
The main property of Mercator map
Vancouver
Ruhmb line
Hawaii
16
Problem with Mercator projection
  • Greenland is presented as large as Africa.
  • In fact Africa's area is 13 times that of
    Greenland.

17
Transverse Mercator (TM)
  • A conformal cylindrical projection
  • The accuracy of TM projections quickly decreases
    from the
  • central meridian.
  • Therefore the longitudinal extent of the
    projected region is
  • restricted to 3? from the central meridian.

18
Transverse Mercator (TM)
TM for one zone
TM for 2 zones
Each TM Zone is in fact a different
projection using a different system of
coordinates. Area, size, and angle distortions
are very small.
19
Gauss-Krueger (GK)
  • GK system using TM projections to map the world
    into numerous standard zones that are 3? wide.
  • X-coordinate Northing
  • Y-ccordinate Easting
  • False Easting 500 000 m
  • False Northing 0 m for Northern
    hemisphere
  • 10 000 000 m for
    Southern hemisphere
  • Scale factor 1.0
  • Germany, Finland, USSR, Eastern Europe, South
    America.
  • The European alternative to UTM

20
Universal Transverse Mercator (UTM)
  • The UTM system applies the TM projection to
    mapping the
  • world, using 60 pre-defined standard zones.
  • UTM zones are 6? wide.
  • Each zone exists in a North and South variant.
  • X-coordinate Northing
  • Y-coordinate Easting
  • False Easting 500 000 m
  • False Northing 0 m for Northern
    hemisphere
  • 10 000 000 m for
    Southern hemisphere
  • Scale factor 0.9996
  • The UTM is defined for areas between latitudes
    80?S and 84?N.

21
UTM Zone parameters
Zone width 6? Zone numbers 1..60 Central
meridians n?6?-183? Northern hemisphere
0?-84?N False Easting 500 000 m False
Northing 0 m Southern hemisphere
80?-0?S False Easting 500 000 m False
Northing 10 000 000 m Scale factor 0.9996 Two
undistorted meridians ?1?37
Why?
.
22
UTM Zones
West Lon Zones 1..30 East Lon
Zones 31..60
23
Irregularities in the UTM grid in Europe
UTM zones for Finland 34, 35 and 36.
24
http//cs.joensuu.fi/koles/utm/
Geocoordinates 68?35.59 N
29?45.45 E UTM Zone 35 (Central meridian
27?) Easting 612 294.5 m Northing 7 611
714.9 m
25
http//cs.joensuu.fi/koles/utm/
Geocoordinates 68?35.59 N
29?45.45 E UTM Zone 35 (Central meridian
27?) Easting 612 287.7 m Northing 7 611
515.8 m
Easting 612 294.5 m Northing 7 611 714.9 m
ED50
26
Arc of the Great Circle or Rhumb Line?
http//216.147.18.102/dist/index
27
Finnish national projection grids
  • VVJ Vanha Valtion koordinaattijärjestelmä
  • (Old Finnish National System), until 1970.
  • KKJ Kartaskoordinaattijärjestelmä
  • (Map Coordinate System)
  • Peruskoordinaattisto
  • or Basic Coordinate System
  • YKJ Yhtenäiskoordinaattisto
  • (Uniform Coordinate System)
  • EURO-FIN (from 2003)
  • EUROREF89

28
VVJ Vanha Valtion koordinaattijärjestelmä
  • Projection Transverse Mercator
  • Grid Gauss-Krueger
  • Reference ellipsoid Hayford 1909International
    1924
  • Scale factor 1
  • In use from 1919 till 1970

29
KKJ Basic coordinate system
Finland is divided into 4 projection zones of 3?
wide 21?E, 24?E, 27?E, and 30?E. Zones
1,2,3, and 4
Extended zones 18, 21, 24, 27, 30 ja
33 numbered from 0 to 5.
30
KKJ Basic coordinate system
  • Zones 1,2,3, and 4
  • False Easting 500 000 m 500 km
  • The ordinal number of Zone is added before the
    actual
  • value of easting 1 500, 2 500, 3 500, and 4
    500 km.
  • False Northing 0 m (Northern Hemisphere).
  • Projection Transversal Mercator (Gauss-Krueger)
  • Reference ellipsoid International 1924 (Hayford
    1909)

  • (a6378388, 1/f297.0)
  • Datum European 1950 (ED50)
  • Scale factor 1.0

31
YKJ Uniform coordinate system
  • Finland is represented in one projecton zone.
  • The central meridian is 27?E
  • Projection Transverse Mercator (Gauss-Krueger)
  • Reference ellipsoid International 1924
  • (a6378388,
    1/f297.0)
  • Datum European 1950 (ED50)
  • Scale factor 1.0

32
EUROREF-FIN
  • Since 2003 year
  • 3D geocentric
  • Finland is represented in one projecton zone.
  • The central meridian is 27?E
  • Projection Universal Transverse Mercator
  • Reference ellipsoid GRS1980
  • (a6378137, 1/f298.257222101)
  • Scale factor 0.9996
  • Accuracy of realization few centimeters

33
EUROREF89
  • For GPS applications
  • 3D geocentric
  • Finland is represented in one projecton zone.
  • The central meridian is 27?E
  • Projection Universal Transverse Mercator
  • Reference ellipsoid WGS84
  • Scale factor 0.9996

34
Projected coordinates conversion
Scheme of conversion for projected coordinates
from projection system S1 to projection system
S2 1) (X,Y)S1 ? (Latitude, Longitude) 2)
(Latitude, Longitude) ? (X,Y)S2
35
Example KKJ ? YKJ
1) (Zone, N,E)KKJ ? (Latitude, Longitude) 2)
(Latitude, Longitude) ? (N,E)YKJ
36
1st step (N,E)KKJ ? (L,L)
Press
37
2nd step (L,L) ? (N,E)YKJ
Press
38
Result (Zone,N,E)KKJ ? (N,E)YKJ
KKJ
YKJ
39
Example KKJ (ED50) ? UTM (WGS84)
1) (Zone, N,E)KKJ ? (Latitude, Longitude) 2)
(Latitude, Longitude) ? (Zone,N,E)UTM
40
Conversion (N,E)KKJ ?(L,L) ? (N,E)UTM
1
1
4
2
2
4
3
3
KKJ
UTM
Write a Comment
User Comments (0)
About PowerShow.com