Neural Networks - PowerPoint PPT Presentation

About This Presentation
Title:

Neural Networks

Description:

Activation: hard limiter/sigmoid. Learning method: supervised ... Activation: sigmoid. Learning method: unsupervised. Learning algorithm: self organization ... – PowerPoint PPT presentation

Number of Views:58
Avg rating:3.0/5.0
Slides: 17
Provided by: musicM
Category:

less

Transcript and Presenter's Notes

Title: Neural Networks


1
Neural Networks
  • MUMT 611
  • Philippe Zaborowski
  • April 2005

2
Table Of Contents
  • Background
  • Examples
  • Types of Neural Networks
  • Applet

3
What are neural nets?
  • A software model that tries to simulate the
    learning process
  • Inspired by brain cells called neurons
  • Unlike the human brain, neural nets have an
    unchangeable structure

4
The Neuron
5
The Artificial Neuron
6
Neuron Layers
7
Learning Process
  • Supervised
  • Input pattern gt Target pattern
  • 0001 gt 001
  • 0010 gt 010
  • Unsupervised
  • No target output
  • Selforganization

8
Example Forwardpropagation
  • Input Pattern gt Target Pattern
  • 01 gt 0
  • 11 gt 1

9
Example Forwardpropagation
  • Input 1 of output neuron 0 0.35 0
  • Input 2 of output neuron 1 0.81 0.81
  • Add the inputs 0 0.81 0.81 ( output)
  • Error 0 - 0.81 -0.81
  • Value for changing weight 1 0.25 0 (-0.81)
    0
  • Value for changing weight 2 0.25 1 (-0.81)
    0.2025
  • Change weight 1 0.35 0 0.35 (not changed)
  • Change weight 2 0.81 (-0.2025) 0.6075

10
Example Forwardpropagation
  • Input 1 of output neuron 1 0.35 0.35
  • Input 2 of output neuron 1 0.6075 0.6075
  • Add the inputs 0.35 0.6075 0.9575 (
    output)
  • Error 1 - 0.9575 0.0425
  • Value for changing weight 1 0.25 1 0.0425
    0.010625
  • Value for changing weight 2 0.25 1 0.0425
    0.010625
  • Change weight 1 0.35 0.010625 0.360625
  • Change weight 2 0.6075 0.010625 0.618125
  • Finally we compute net error for both operations
  • (-0.81)2 (0.0425)2 0.65790625

11
Applications
  • Image processing
  • Pattern classification
  • Speech analysis
  • Optimization problems
  • Robot steering

12
Perceptron (Rosenblatt 58)
  • Type feedforward
  • Layers
  • 1 input
  • 1 output
  • Input binary
  • Activation hard limiter
  • Learning method supervised
  • Learning algorithm Hebb
  • Use
  • Simple logical operations
  • Pattern classification

13
Multi-Layer-Perceptron (Minsky 69)
  • Type feedforward
  • Layers
  • 1 input
  • 1 or more hidden
  • 1 output
  • Input binary
  • Activation hard limiter/sigmoid
  • Learning method supervised
  • Learning algorithm backpropagation
  • Use
  • Complex logical operations
  • Pattern classification

14
Backpropagation (Hinton 86)
  • Type feedforward
  • Layers
  • 1 input
  • 1 or more hidden
  • 1 output
  • Input binary
  • Activation sigmoid
  • Learning method supervised
  • Learning algorithm backpropagation
  • Use
  • Complex logical operations
  • Pattern classification
  • Speech analysis

15
Hopfield (Hopfield 82)
  • Type feedback
  • Layers 1 matrix
  • Input binary
  • Activation hard limiter/signum
  • Learning method unsupervised
  • Learning algorithm
  • Delta learning rule
  • Simulated annealing
  • Use
  • Pattern association
  • Optimization problems

16
Kohonen (Kohonen 82)
  • Type feedforward
  • Layers
  • 1 input
  • 1 map layer
  • Input binary or real
  • Activation sigmoid
  • Learning method unsupervised
  • Learning algorithm
  • self organization
  • Use
  • Pattern classification
  • Optimization problems
  • Simulation
Write a Comment
User Comments (0)
About PowerShow.com