CS 461: Machine Learning Lecture 4 - PowerPoint PPT Presentation

About This Presentation
Title:

CS 461: Machine Learning Lecture 4

Description:

'Smooth' Output: Sigmoid Function. Why? Converts output to probability! Less ' ... SVM with sigmoid kernel = 2-layer MLP. Parameters. ANN: # hidden layers, # nodes ... – PowerPoint PPT presentation

Number of Views:36
Avg rating:3.0/5.0
Slides: 16
Provided by: kiriwa
Category:

less

Transcript and Presenter's Notes

Title: CS 461: Machine Learning Lecture 4


1
CS 461 Machine LearningLecture 4
  • Dr. Kiri Wagstaff
  • wkiri_at_wkiri.com

2
Plan for Today
  • Solution to HW 2
  • Support Vector Machines
  • Neural Networks
  • Perceptrons
  • Multilayer Perceptrons

3
Review from Lecture 3
  • Decision trees
  • Regression trees, pruning, extracting rules
  • Evaluation
  • Comparing two classifiers McNemars test
  • Support Vector Machines
  • Classification
  • Linear discriminants, maximum margin
  • Learning (optimization) gradient descent, QP

4
Neural Networks
  • Chapter 11
  • It Is Pitch Dark

5
Perceptron
Graphical
Alpaydin 2004 ? The MIT Press
6
Smooth Output Sigmoid Function
  • Why?
  • Converts output to probability!
  • Less brittle boundary

7
K outputs
Alpaydin 2004 ? The MIT Press
8
Training a Neural Network
  • Randomly initialize weights
  • Update Learning rate (Desired - Actual)
    Input

9
Learning Boolean AND
Perceptron demo
Alpaydin 2004 ? The MIT Press
10
Multilayer Perceptrons MLP ANN
Alpaydin 2004 ? The MIT Press
11
x1 XOR x2 (x1 AND x2) OR (x1 AND x2)
Alpaydin 2004 ? The MIT Press
12
Examples
  • Digit Recognition
  • Ball Balancing

13
ANN vs. SVM
  • SVM with sigmoid kernel 2-layer MLP
  • Parameters
  • ANN hidden layers, nodes
  • SVM kernel, kernel params, C
  • Optimization
  • ANN local minimum (gradient descent)
  • SVM global minimum (QP)
  • Interpretability? About the same
  • So why SVMs?
  • Sparse solution, geometric interpretation, less
    likely to overfit data

14
Summary Key Points for Today
  • Support Vector Machines
  • Neural Networks
  • Perceptrons
  • Sigmoid
  • Training by gradient descent
  • Multilayer Perceptrons
  • ANN vs. SVM

15
Next Time
  • Midterm Exam!
  • 910 1040 a.m.
  • Open book, open notes (no computer)
  • Covers all material through today
  • Neural Networks(read Ch. 11.1-11.8)
  • Questions to answer from the reading
  • Posted on the website (calendar)
  • Three volunteers?
Write a Comment
User Comments (0)
About PowerShow.com