Mat 161 PreCalculus - PowerPoint PPT Presentation

1 / 18
About This Presentation
Title:

Mat 161 PreCalculus

Description:

General Sine and Cosine Curves. The General Form of any Sine and Cosine functions is ... Properties of general Sine and Cosine. Based on this, we have that for ... – PowerPoint PPT presentation

Number of Views:58
Avg rating:3.0/5.0
Slides: 19
Provided by: moni64
Category:
Tags: precalculus | mat | sine

less

Transcript and Presenter's Notes

Title: Mat 161 PreCalculus


1
Mat 161 - PreCalculus
  • Sine and Cosine Functions
  • Sections 5.5

2
Sine The Function
Let f(x) sin (x). Then we know that The domain
is all real numbers and the range is -1, 1.
3
Sine The Function
4
Properties of f(x) sin(x)
  • Domain (-8, 8)
  • Range -1, 1
  • Period 2p
  • y-intercept 0
  • x-intercepts 0, p, 2p (all integer multiples
    of p)
  • Odd, symmetric about the origin

5
Cosine The Function
Let f(x) cos (x). Then we know that The domain
is all real numbers and the range is -1, 1.
6
Cosine The Function
1
4p
2p
3p
p
-1
7
Properties of f(x) cos(x)
  • Domain (-8, 8)
  • Range -1, 1
  • Period 2p
  • y-intercept 1
  • x-intercepts p/2, 3p/2 (all odd multiples of
    p/2)
  • Even, symmetric about the y-axis

8
General Sine and Cosine Curves
  • The General Form of any Sine and Cosine functions
    is
  • Y Asin(Bx C) D
  • and
  • y Acos(Bx C) D
  • To understand their graphs we need to remember
    some transformation laws.

9
Recall
  • Given the graph of y f(x) and real number
    c, we know that
  • y f(xc) is a shift horizontally
  • y f(x) c is a shift vertically
  • Y -f(x) is a reflection about the x-axis
  • Y f(-x) is a reflection about the y-axis
  • Y af(x) is a stretch/shrinking vertically
  • Y f(ax) is a stretch/shrinking horizontally

10
Properties of general Sine and Cosine
  • Based on this, we have that for
  • y Asin(Bx C) D or y Acos(Bx C) D
  • Amplitude A
  • Period 2p/B
  • Phase shift C/B
  • Vertical shift D

11
TheTrick ?!
  • Know the basic 5 points for each function
  • Find the amplitude
  • Find the period
  • Find where the graph begins and ends
  • Plot the start and the finish and fill in the
    rest ?!

12
Graph f(x) 2sin(x)
  • Amplitude
  • Period
  • Start
  • Finish

13
Graph f(x) -?cos(x)
  • Amplitude
  • Period
  • Start
  • Finish

14
Graph f(x) cos(-3x)
  • Amplitude
  • Period
  • Start
  • Finish

15
Graph f(x) sin(xp/3)
  • Amplitude
  • Period
  • Start
  • Finish

16
Graph f(x) -2sin(x-p/2)
  • Amplitude
  • Period
  • Start
  • Finish

17
Graph f(x) -2cos(px-p)
  • Amplitude
  • Period
  • Start
  • Finish

18
Unit Circle Trigonometry
  • Reference
  • Algebra and Functions
  • Blitzer
  • 3rd Edition
Write a Comment
User Comments (0)
About PowerShow.com