Phase Dynamics of Alfven Intermittent Turbulence in the Heliosphere - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Phase Dynamics of Alfven Intermittent Turbulence in the Heliosphere

Description:

Spatiotemporal chaos can be described in terms of UPOs. Christiansen et al., Nonlinearity 1997 ... Spatiotemporal phase dynamics of Alfven waves. Chian et al. ... – PowerPoint PPT presentation

Number of Views:69
Avg rating:3.0/5.0
Slides: 26
Provided by: Gri7150
Category:

less

Transcript and Presenter's Notes

Title: Phase Dynamics of Alfven Intermittent Turbulence in the Heliosphere


1
Phase Dynamics of Alfven Intermittent Turbulence
in the Heliosphere
  • Abraham C.-L. Chian
  • National Institute for Space Research (INPE),
    Brazil
  • Erico L. Rempel, ITA, Brazil

2
Outline
  • Observation of Alfven intermittent turbulence in
    the heliosphere
  • Model of nonlinear phase dynamics of Alfven
    intermittent turbulence

3
  • Observation of Alfven intermittent turbulence
  • in the heliosphere

4
Intermittency
  • Time series displays random regime switching
    between laminar and bursty periods of
    fluctuations
  • Probability distribution function (PDF) displays
    a non-Gaussian shape due to large-amplitude
    fluctuations at small scales
  • Power spectrum displays a power-law behavior
  • Ref.
  • Burlaga, Interplanetary Magnetohydrodynamics
    , Oxford U. P. (1995)
  • Biskamp, Magnetohydrodynamic Turbulence,
    Cambridge U. P. (2003)
  • Lui, Kamide Consolini, Multiscale
    Coupling of Sun-Earth Processes,
  • Elsevier (2005)

5
Alfvén intermittency in the solar wind
  • Time evolution of velocity fluctuations measured
    by
  • Helios 2, ?V(?) V(t?)-V(t), at 4 different
    time scales (?)
  • Carbone et al., Solar Wind X, 2003

6
Non-Gaussian PDF for Alfven intermittency in the
solar wind measured by Helios 2
Slow streams
Fast streams
dbt B(t t) B(t)
  • Sorriso-Valvo et al., PSS, 49, 1193 (2001)

7
Power-law behavior in the power spectrum of
Alfvén intermittency in high-speed solar wind
Power spectra of outward (solid lines) and inward
(dotted lines) propagating Alfvénic fluctuations
in high-speed solar wind, indicating power-law
behavior
  • Helios spacecraft (Marsch Tu, 1990)

8
Chaos
  • Chaotic Attractors and Chaotic Saddles
  • Sensitive dependence on initial conditions and
    system parameters
  • Aperiodic behavior
  • Unstable periodic orbits
  • Ref
  • Lorenz, J. Atm. Sci. (1963) gt Lorenz chaotic
    attractor
  • Chian, Kamide, et al., JGR (2006) gt Alfven
    chaotic saddle

9
Evidence of chaos in the heliosphere
  • Chaos in Alfven turbulence in the solar wind
  • Macek Radaelli, PSS (2001)
  • Macek et al., PRE (2005)
  • Chaos in solar radio emissions
  • Kurths Karlicky, SP (1989)
  • Kurths Schwarz, SSRv (1994)
  • Chaos in the (AE, AL) auroral indices
  • Vassialiadis et al., GRL (1990)
  • Sharma et al., GRL (1993)
  • Pavlos et al., NPG (1999)

10
Unstable periodic orbits and turbulence
  • Spatiotemporal chaos can be described in terms of
    UPOs
  • Christiansen et al., Nonlinearity 1997
  • Identification of an UPO in plasma turbulence in
    a tokamak experiment
  • Bak et al, PRL 1999
  • Sensitivity of chaotic attractor of a barotropic
    ocean model to external
  • influences can be described by UPOs
  • Kazantsev, NPG, 2001
  • Intermittency of a shell model of fluid
    turbulence is described by an UPO
  • Kato and Yamada, Phys. Rev. 2003
  • Control of chaos in a fluid turbulence by
    stabilization of an UPO
  • Kawahara, Phys. Fluids 2005

11
  • Model of nonlinear phase dynamics of
  • Alfven intermittent turbulence

12
Phase dynamics of MHD turbulence in the solar
wind
  • Geotail magnetic field data shows evidence of
    phase coherence in MHD waves in the solar wind
  • Hada, Koga and Yamamoto, SSRv 2003
  • Phase coherence of MHD turbulence upstream of the
    Earths bow shock
  • Koga and Hada, SSRv 2003

13
Two approaches to Alfven chaos
  • Low-dimensional chaos
  • Stationary solutions of the derivative
    nonlinear Schroedinger equation
  • Hada et al., Phys. Fluids 1990
  • Rempel and Chian, Adv. Space Res. 2005
  • Chian et al., JGR 2006
  • High-dimensional chaos
  • Spatiotemporal solutions of the
    Kuramoto-Sivashinsky equation
  • Chian et al., Phys. Rev. E 2002
  • Rempel et al., Nonlinear Proc. Geophys.
    2005
  • Rempel and Chian, Phys. Rev. E 2005

14
Kuramoto-Sivashinsky equation
Phase dynamics of a NL Alfven wave is governed by
the Kuramoto-Sivashinsky eqn. (LaQuey et al. PRL
1975, Chian et al. PRE 2002, Rempel and Chian PRE
2005)
  • is a damping parameter.
  • Assuming periodic boundary conditions ?(x,t)
    ?(x2?,t) and expanding ? in a Fourier series

we obtain a set of ODEs for the Fourier modes ak
We seek odd solutions by assuming ak purely
imaginary
15
Spatiotemporal phase dynamics of Alfven waves
  • Truncation N 16 Fourier modes
  • Chian et al., PRE (2002)
  • Rempel and Chian, Phys. Lett. A (2003)
  • Rempel et al., NPG (2005)
  • Rempel and Chian, PRE (2005)

16
Chaotic solutions
  • Chaotic Attractors
  • - Set of unstable periodic orbits
  • - Positive maximum Lyapunov exponent
  • Attract all initial conditions in a given
    neighbourhood
  • (basin of attraction)
  • Responsible for asymptotic chaos
  • Chaotic Saddles (Chaotic Non-Attractors)
  • Set of unstable periodic orbits
  • Positive maximum Lyapunov exponent
  • Repel most initial conditions from their
    neighbourhood, except those on stable manifolds
  • (no basin of attraction)
  • Responsible for transient chaos

17
Bifurcation Diagram
  • Rempel and Chian, PRE 71, 016203 (2005).

18
Attractor Merging Crisis
19
Post-Crisis Chaotic Saddles
Rempel and Chian, PRE 71, 016203 (2005)
20
Crisis-induced intermittency
n 0.02990
Rempel and Chian, PRE 71, 016203 (2005)
21
Characteristic intermittency time
Rempel and Chian, PRE 71, 016203 (2005)
22
HILDCAA(High Intensity Long Duration Continuous
Auroral Activities)
  • IMP 8
  • Gonzalez, Tsurutani, Gonzalez, SSR 1999
  • Tsurutani, Gonzalez, Guarnieri, Kamide, Zhou,
    Arballo, JASTP (2004)

23
CONCLUSIONS
  • Observational evidence of chaos and intermittency
    in the heliosphere
  • Dynamical systems approach provides a powerfull
    tool to probe the complex nature of space
    environment, e.g., Alfven intermittent turbulence
  • Unstable structures (unstable periodic orbits and
    chaotic saddles) are the origin of intermittent
    turbulence
  • Characteristic intermittency time can be useful
    for space weather and space climate forecasting

24
Advanced School on Space Environment (ASSE
2006)10-16 September 2006, LAquila
ItalyConveners R. Bruno, A. Chian, Y. Kamide,
U. VillanteHandbook of Solar-Terrestrial
EnvironmentEditors Y. Kamide and A.
ChianSpringer 2006
WISER mission linking nations for the peaceful
use of the earth-ocean-space environment (www.ce
a.inpe.br/wiser)
25
  • THANK YOU !
Write a Comment
User Comments (0)
About PowerShow.com