Karine CHESNEL - PowerPoint PPT Presentation

1 / 28
About This Presentation
Title:

Karine CHESNEL

Description:

The coherent scattering endstation at ALS. First investigations on ... Magnetic memory. Spatiotemporal fluctuations (Temperature, field) transitions. K.Chesnel ... – PowerPoint PPT presentation

Number of Views:70
Avg rating:3.0/5.0
Slides: 29
Provided by: KMChe
Learn more at: https://als.lbl.gov
Category:

less

Transcript and Presenter's Notes

Title: Karine CHESNEL


1
New developments and investigations with
coherent magnetic scattering at ALS
Karine CHESNEL ALS
WORKSHOP Magnetic Nanostructures, Interfaces,
and New Materials Theory, Experiment, and
Applications
2
Collaborations
Steve Kevan University of Oregon Joshua
Turner Jeffrey Kortright Lawrence Berkeley
Lab Eric Fullerton Hitachi, San Jose Olav
Hellwig (BESSY, Germany) Larry Sorensen
University of Washington Michael
Pierce Shouheng SUN IBM, New York Kannan
KRISHNAN University of Washington
K.Chesnel
3
Outline
  • Introduction
  • The coherent scattering endstation at ALS
  • First investigations on nanoparticles
  • Different way to use magnetic Speckle

K.Chesnel
4
How obtaining magnetic speckles?
Light (Soft X)
Temporal Coherence
K.Chesnel
5
Coherent Soft X-Ray Beamline (BL12.0.2)
Energy range 200-1000eV Coherent flux at
500eV 5 1010 ph/sec/0.1BW
K.Chesnel
Rosfjord et al. (2004)
6
Coherent Soft X-ray Magnetic Scattering endstation
Flangosaurus
K.Chesnel
7
Flangosaurus
K.Chesnel
8
Flangosaurus
Unit pole
Octopolar magnet
Water Cooling system
Current Input (100A)
z
H
y
Produce Magnetic field in any direction Maximal
amplitude 0.6 T
x
K.Chesnel
9
Flangosaurus
Magnetic manipulator
Scattering chamber
Load-lock chamber
Cryogenic Sample- holder
Rotation brackets
Light
Bellow
Sample location
Optical table
Pressure 10-8 mBar
K.Chesnel
10
Flangosaurus Cryogenic Sample holder pinhole
mechanism
K.Chesnel
11
Experimental possibilities
  • Control of pinhole positioning
  • High oversampling condition
  • In-situ 3D magnetic field
  • Sample cooling (cryostat)
  • Investigation of the full main scattering plane
  • 2D detection with high resolution
  • Fast detection

K.Chesnel
12
Different geometries specificities
K.Chesnel
13
Probing the magnetism in nanoparticles
K.Chesnel
14
Probing the magnetism in nanoparticles
Different systems under study
  • Co particles 8-9nm (variable packing)
  • Fe3O4 particles variable size 4-16nm

Sources S. Sun, K Krishnan
Kortright et al. (2004)
K.Chesnel
15
Characterization with polarized light (BL4)
Co nanocrystals
K.Chesnel
16
Coherent 2D scattering on nanoparticles
Co Nanoparticles assembly precipitated on TEM grid
Energy optimized at Co L3 edge l1.58 nm
K.Chesnel
17
General 2D scattering Patterns (no pinhole)
Localized peaks gt Ordered area
Isotropic Pattern
  • ALL patterns distributed
  • along a RING
  • ordered area d 12nm
  • disordered d 13nm

TEM image (K.Krishnan)
VERY HERTEROGENEOUS!!
Another Ordered area
K.Chesnel
18
Effect of magnetic field in linear polarization
- Ordered area
Scattering peak (charge magnetic)
Full scattering
  • Difference
  • Remanence
  • Saturation

(Effect 0.5)
With PERPENDICULAR field I (saturation) gt I
(remanence)
At saturation all particle moment are pointing
the same direction and contribute to the peak
With linear polarisation X rays are not sensitive
to the in plane component
With IN PLANE field I (saturation) lt I
(remanence)
K.Chesnel
19
K.Chesnel
Effect of magnetic field isotropic area
Full scattering
Scattering signal (charge magnetic)
Difference Remanence - Saturation
With PERPENDICULAR field I (saturation) gt I
(remanence)
Effect 4
It seems isotropic areas show a stronger tendency
to AF order at remanence, while ordered area are
more F
20
Obtaining a Speckle pattern degree of
coherence/ pinhole size (Co edge)
No pinhole 10sec
C1
Dainty law
3 mm pinhole 300s
5 mm pinhole 100s
Transverse coherence length lc1mm
C12
K.Chesnel
21
What the Speckle pattern tell us?
Speckle pattern
Three Ways to use the speckle
  • Static spatial cross correlation (metrology)
  • Slow dynamic on spatial correlation
  • Fast dynamic time correlation

K.Chesnel
22
1. Static Speckle metrology
A
Cross-correlation between two speckles patterns A
and B
B
Correlation coefficient
r 0 no memory r 1 total memory (exact same
pattern)
Magnetic Memory
Pierce et al. PRL 90, 175502 (2003)
K.Chesnel
23
Major Loop Return and Conjugate Point Memory
major loop
VERY HIGH MEMORY !
K.Chesnel
24
2. Slow dynamic
K.Chesnel
Diffuse ring (disordered area) Each frame 10 sec
25
3. Fast dynamic
Principle
Scattering Signal I (t)
Price, Sorensen, Kevan et al. PRL 82, 755 (1999)
K.Chesnel
26
Fast dynamic measurements First results on
Fe3O4 nanoparticles
Fe L3 edge 25 mm pinhole/sample 300 mm
hole/detector Intensity 15 000 cps/sec
  • Evolution with T
  • (through blocking transition)
  • Effect of magnetic field

Map the dynamic (H,T)
K.Chesnel
27
Conclusion
  • New endstation for coherent magnetic scattering
    now functional at ALS BL12
  • First investigations on Co and Fe3O4
    nanoparticles with coupled measurements in
    incoherent light (XMCD, SAXS) and coherent light
    (speckle)
  • Static speckle study magnetic memory
  • Slow dynamic time scale gt 1sec
  • Fast dynamic time scale 10 msec 1sec

K.Chesnel
28
General future directions
  • Candidates
  • Metallic thin films
  • Co/Pt, FePd, FePt
  • Patterned media
  • Nanoparticles
  • Exchange bias
  • Manganites CMR
  • Cuprates
  • superconductivity
  • Speckle techniques
  • Speckle Metrology (spatial)
  • Slow and fast dynamic
  • Lensless magnetic imaging

K.Chesnel
Write a Comment
User Comments (0)
About PowerShow.com