Problems of syntaxsemantics interface - PowerPoint PPT Presentation

About This Presentation
Title:

Problems of syntaxsemantics interface

Description:

Np st phane. Vi joue. Vt cherche. Vp dit. Vint essaie ... essaie(x, P) lexical rules. Example : st phane cherche un ballon. SN. Det. N. un. ballon. ballon(x) ... – PowerPoint PPT presentation

Number of Views:69
Avg rating:3.0/5.0
Slides: 29
Provided by: AlainL66
Category:

less

Transcript and Presenter's Notes

Title: Problems of syntaxsemantics interface


1
Problems of syntax-semanticsinterface
  • ESSLLI 02
  • Trento

2
summary
  • The need for lambda calculus
  • From Montague grammar to categorial grammar
  • Lambek calculus
  • Curry-Howard isomorphism
  • Proof-nets
  • Extensions (and restrictions) of L
  • Extended proof-nets

3
Jackendoff
  • Where (narrow) syntax has structural relations
    such as head-to-complement, head-to-specifier,
    and head-to-adjunct, conceptual structure has
    structural relations such as predicate-to-argument
    , category-to-modifier, and quantifier-to-bound
    variable. Thus, although conceptual structure
    undoubtedly constitutes a syntax in the generic
    sense, its units are not NPs, VPs, etc. In
    particular, unlike syntactic and phonological
    structures, conceptual structures are purely
    relational, in the sense that linear order plays
    no role.

4
recallMontague grammars
  • Truth-conditional approach
  • sentence ? logical formula (true or false)
  • noun phrase ? term (constant, variable, complex
    term)
  • But what for other linguistic expressions?
  • verb ? open atomic formula?
  • but how to combine?
  • kiss(x,y) composed with p and m gives
  • kiss(p,m) or kiss(m,p)?

5
fortunately lambda calculus
  • constants, variables ?-terms
  • If M and N are ?-terms, then (M N) or M(N) is a
    ?-term,(application)
  • If M is a ?-term and if x is a variable, then
    ?x.M is a ?-term (abstraction)
  • ?-reduction (?x.M, N) ? MN/x

6
Example how to extract the  meaning  of
quantifiers?
  • Goal ?x (child(x) ? play(x))
  • Identical to
  • (?P.?x (enfant(x) ? P(x)) ?u.play(u))
  • therefore
  • every child ?P.?x (child(x) ? P(x))
  • Identical to
  • (?Q.?P.?x (Q(x) ? P(x)) ?v.child(v))
  • therefore
  • every ?Q.?P.?x (Q(x) ? P(x))

7
other quantifiers
  • a, an ?Q.?P.?x (Q(x)?P(x))
  • no ?Q.?P.??x (Q(x)?P(x))

8
But we cannot apply anything to anything
  • x is a ?-term
  • (x x) is a ?-term
  • ?x.(x x) is a ?-term
  • (?x.(x x) ?x.(x x)) is a ?-term
  • But
  • (?x.(x x) ?x.(x x)) ? (?x.(x x) ?x.(x x))
  • (no end to the reduction the normalisation
    process does not stop)

9
  •  Intransitive verbs  apply to nominal entities
    (and they give propositions)
  •  Transitive verbs  apply to nominal entities
    (and they give intransitive verbs)
  •  Propositional verbs  apply to propositions
    (and they give propositions)
  •  Adjectives  apply to nominal entities (and
    they give nominal entities)

10
Typed ?-calculus
  • Constants and variables of type a are ?-terms of
    type a
  • if M is a ?-term of type lta, bgt and N a ?-term
    of type a, then (M N) is a ?-term of type b
  • If M is a ?-term of type b and if x is a variable
    of type a, then ?x. M is a ?-term of type lta, bgt

11
  • In other words

12
Correspondance syntactic categories semantic
types
  • sentences
  • VP, IV
  • NP, PN
  • TT
  • verbal adverbs VI/VI
  • CN (common noun)
  • sentential adverbs
  • preposition
  • propositional verb
  • intentional verb
  • article
  • t
  • lte, tgt
  • e ou bien ltlte,tgt, tgt
  • ltltlte,tgt,tgt,lte,tgtgt
  • ltlte,tgt, lte, tgtgt
  • lte, tgt
  • ltt, tgt
  • ltltlte,tgt,tgt, ltlte,tgt, lte, tgtgtgt
  • ltt, lte, tgtgt
  • ltlte,tgt, lte, tgtgt
  • ltlte, tgt, ltlte,tgt, tgtgt

13
syntax
  • For each syntactic category A, the set PA of all
    expressions of category A contains at least the
    set BA of the dictionary words of category A,
  • If ??PA and if ??PB, then, in some cases to
    enumerate, F(?,?) for some function F belongs to
    some set PC.

14
Example of rule
  • S2 if ??PT/CN and if ??PCN, then, F2(?,?) ? PT,
    where F2(?,?) ??, where ? ? except if ? is
    equal to a and if the first word of ? begins by a
    vowel, in which case ? an
  • Remark T is the category of terms, example a
    man, an aristocrat

15
Example of rule
  • S4 if ??PT and if ??PVI, then F4(?, ?) ?Pt,
  • where F4(?, ?) ? ?, where ? is obtained from
    ? by replacing the first verb by its 3rd person
    singular form
  • Example ? John, ? walk,
  • F4(?, ?) John walks

16
Montagovian analysis
  • John seeks a unicorn
  • S1 a?T/CN, unicorn?CN
  • S2 F2(a, unicorn) a unicorn ?T
  • S1 seek ?VI/T
  • S5 F5(seek, a unicorn) seek a unicorn ?VI
  • S1 John ?T
  • S4 F4(John, seek a unicorn) John seeks a
    unicorn ?t

17
John seeks a unicorn
18
Second analysis !
  • John seeks a unicorn
  • S1 seek ?VI/T, he1 ?T
  • S5 F5(seek, he1) seek him1 ?VI
  • S4 F4(John, seek him1) John seeks him1 ?t
  • S2 F2(a, unicorn) a unicorn ? T
  • S14 F14,1(a unicorn, John seeks him1) John
    seeks a unicorn ?t

19
John seeks a unicorn
John seeks him1
John
seek him1
seek
him1
20
remark
  • In a  modern grammar (cf. GPSG in the
    eighties), syntagmatic rules are put in
    correspondance with some semantic counterpart,
  • In a  logical  grammar (eg. Lambek grammars),
    the correspondance automatically follows from a
    known isomorphism between logical derivations and
    ?-terms (Curry-Howard)

21
Syntagmatic grammar
  • S ? SN SV
  • SN ? Det N
  • SN ? Np
  • SV ? Vi
  • SV ? Vt SN
  • SV ? Vp que S
  • SV ? Vint SV
  • ?(S) (?(SN) ?(SV))
  • ?(SN) (?(Det) ?(N))
  • ?(SN) ?(Np)
  • ?(SV) ?(Vi)
  • ?(SV) ?(SN) o ?(Vt)
  • ?(SV) (?(Vp) ?(S))
  • ?(SV) ?(SV)o?(Vint)

22
lexical rules
  • Det ? chaque tout
  • Det ? un
  • N ? enfant ballon
  • Np ? stéphane
  • Vi ? joue
  • Vt ? cherche
  • Vp ? dit
  • Vint ? essaie
  • ?(tout) ?Q.?P.?x (Q(x) ? P(x))
  • ?(un) ?Q.?P.?x (Q(x)?P(x))
  • ?(enfant) ?x.enfant(x)
  • ?(stéphane) ?P.P(stéphane)
  • ?(joue) ?x.joue(x)
  • ?(cherche) ?x. ? y.cherche(x, y)
  • ?(dit) ?P. ?x. dit(x,P)
  • ?(essaie) ?x. ?P.essaie(x, P)

23
Example stéphane cherche un ballon
  • (?Q.?P.?xQ(x)?P(x) ?x. ballon(x))
  • ?P.?x(?x. ballon(x) x)?P(x)
  • ?P.?xballon(x)?P(x)

SN
N
Det
un
ballon
?Q.?P.?xQ(x)?P(x)
?x. ballon(x)
24
Example stéphane cherche un ballon
SV
?P.?xballon(x)?P(x)
Vt
SN
?x.?y. chercher(x,y)
N
Det
un
ballon
25
Example stéphane cherche un ballon
  • ?z. (?P.?xballon(x)?P(x),(?x.?y. chercher(x,y)
  • z)) ? ?z. (?P.?xballon(x)?P(x), ?y.
    chercher(z,y))
  • ?z. ?xballon(x)? (?y. chercher(z,y), x),
  • ?z. ?xballon(x)? chercher(z,x)

Composition (?x.f(x)) o (?y.g(y)) ?z.
(?x.f(x), (?y.g(y), z))
SV
?P.?xballon(x)?P(x)
Vt
SN
?x.?y. chercher(x,y)
N
Det
un
ballon
26
Example stéphane cherche un ballon
S
  • ?z. ?xballon(x)? chercher(z,x)

SV
SN
?P.?xballon(x)?P(x)
Vt
SN
?x.?y. chercher(x,y)
N
Det
Np Stéphane ?P. P(stéphane)
un
ballon
27
Example stéphane cherche un ballon
S
  • (?P. P(stéphane) ?z. ?xballon(x)?
    chercher(z,x))
  • (?z. ?xballon(x)? chercher(z,x) stéphane)
  • ?xballon(x)? chercher(stéphane,x)
  • ?z. ?xballon(x)? chercher(z,x)

SV
SN
?P.?xballon(x)?P(x)
Vt
SN
?x.?y. chercher(x,y)
N
Det
Np Stéphane ?P. P(stéphane)
un
ballon
28
Example stéphane cherche un ballon
?xballon(x)? chercher(stéphane,x)
S
  • ?z. ?xballon(x)? chercher(z,x)

SV
SN
?P.?xballon(x)?P(x)
Vt
SN
?x.?y. chercher(x,y)
N
Det
Np Stéphane ?P. P(stéphane)
un
ballon
Write a Comment
User Comments (0)
About PowerShow.com