Title: Louis DiMauro
1Louis DiMauro OSU 2005
2Louis DiMauro OSU 2005
3electron energy Ee h? - ip
- transition probability P ?F?where ? ? cm2, F
? ?/cm2 s, ? ? s - consider cw-light? (1A)2 10-16 cm2for P ?
1 F 1016 ? /cm2 sor intensity I 10-3 W/cm2 - 100 fs (10-13 s) light pulsefor P ? 1 F 1029
? /cm2 sor intensity I 1010 W/cm2
42-photon case (h? ? ip)
transition probability P ?a F ? ?b F ? or P
?2 F2 ? where ?2 ? ?a ? ?b cm4 s
5Tunnel Rate ? 1/E eE
6- electrons are emitted as burst every ½-cycle.
7(No Transcript)
8(No Transcript)
9Xe Ip 12.1 eV Ee Nh? - Ip 0.53 ?m, N6,
EN1.9 eV 1.06 ?m, N11, EN0.77 eV ATI ?NS
(NS)h? - Ip 0.53 ?m, S1, E74.2 eV
10- ponderomotive or quiver energy Up ? l2 ? /4
- displacement a ? l2 E
- For 800 nm (red) laser at 1015 W/cm2 Up 60
eV a 50 au (25 A)
think in ponderomotive units !!!
11- xenon
- long pulse, 30 ps
- 1 ?m , 30 TW/cm2
12- electrons are repelled from regions of high
intensity. - long pulse (adiabatic)quiver E ? translational
?NS(r,?) (NS)h? - Ip Up(r,?)
Up(r,?) intensity-independent energy
13Freeman et al. PRL 59, 1092 (1987)
for short pulse the ponderomotive gradient is
negligible.
14I ?
15- quasi-classical description
- Gallagher, PRL 61, 2304 (1988)
- Van Linden van den Heuvell Muller, in
Multiphoton Processes (1988) - Corkum, Burnett Brunel, PRL 62, 1259 (1989)
electric fieldE Eo sin?t
velocityv(t) Eo/?cos?t - cos?o vo
quiver drift for tunneling, vo0
16v(t) Eo/?cos?t - cos?o Quiver Drift
17remember Up ? ? !!!
18(No Transcript)
19helium, 0.8 ?m, 1 PW/cm2
ideal case 10 Hz 100 channel experiment 100
e/shot or 1 e/chs, 105 range ? 28 hrs!
20- n-photon ionization perturbation theory P ?n
Fn ? - saturation (depletion) P ? ? ? Fs (?n ?)-1/n
- helium (24 eV, 16-photons)
- Fs 1033 p/scm2 or Es 0.1 au
- over-the-barrier ionization
- V(x) -Ze2/x eEox
- solve for Eo
- Eo Ip2/4q3Z
- helium Eo 0.2 au
answer 1 au field is adequate for neutral atomic
ionization!
21baseline 1 au field strength (3.5 ? 1016
W/cm2) pulse 100 fs duration 4 ?m beam
waist ? 1 mJ pulse energy typical laser
produces a few Watts average power ? 103 pulses
per second
- kilohertz regenerative amplification (late
1980s) - Mourou, Bado, Bouvier (Rochester)
- Saeed, Kim, DiMauro (BNL)
- Fayer (Stanford)
-
- seminal work (LLNL)
- Lowdermilk Murray, J App. Phys. 51, 2436
(1980).
22- cw or quasi-cw pumping
- factors absorption spectrum, lifetime, thermal
coefficients, - material properties
- damage, saturation fluence,
- YLF, YAG, glass millisecond lifetimes, broad
absorption - poor thermal properties, narrow emission ??
- Tisapphire microsecond lifetimes, narrow
absorption - good thermal properties, broad emission ??
- advantages of regenerative amplification
- high amplification 106-8
- excellent spatial mode
- good stability 1-3 rms
23(No Transcript)
24- extract maximum energy
- minimize optical damage
- state-of-the-art systems ? 1020 W/cm2
- kilohertz operation ? 1016 W/cm2
25(No Transcript)
26(No Transcript)
27xenon, 1 ?m, 1013 W/cm2
- higher sensitivity ? new insights
28(No Transcript)
29(No Transcript)
30tomorrows plat du jour helium the rebirth of
the classical picture