Announcement - PowerPoint PPT Presentation

About This Presentation
Title:

Announcement

Description:

If you purchased the textbooks, but it hasn't arrived, please ... Totient Function. Totient function (n): number of integers less than n relatively prime to n ... – PowerPoint PPT presentation

Number of Views:66
Avg rating:3.0/5.0
Slides: 45
Provided by: fei1
Category:

less

Transcript and Presenter's Notes

Title: Announcement


1
Announcement
  • Homework 1 out, due 1/18 1159pm
  • If you purchased the textbooks, but it hasnt
    arrived, please see TA for copies of the
    questions,
  • Project 1 due tomorrow midnight

2
Review
  • Overview of Cryptography
  • Classical Symmetric Cipher
  • Substitution Cipher
  • Transposition Cipher
  • Product Cipher
  • Modern Symmetric Ciphers (DES)

3
Basic Terminology
  • plaintext - the original message
  • ciphertext - the coded message
  • cipher - algorithm for transforming plaintext to
    ciphertext
  • key - info used in cipher known only to
    sender/receiver
  • encipher (encrypt) - converting plaintext to
    ciphertext
  • decipher (decrypt) - recovering ciphertext from
    plaintext
  • cryptography - study of encryption
    principles/methods
  • cryptanalysis (codebreaking) - the study of
    principles/ methods of deciphering ciphertext
    without knowing key
  • cryptology - the field of both cryptography and
    cryptanalysis

4
Feistel Cipher Structure
  • Feistel cipher implements Shannons S-P network
    concept
  • based on invertible product cipher
  • Process through multiple rounds which
  • partitions input block into two halves
  • perform a substitution on left data half
  • based on round function of right half subkey
  • then have permutation swapping halves

5
Feistel Cipher Structure
  • Feistel cipher implements Shannons S-P network
    concept
  • Achieve diffusion and confusion

6
DES (Data Encryption Standard)
  • Published in 1977, standardized in 1979.
  • Key 64 bit quantity8-bit parity56-bit key
  • Every 8th bit is a parity bit.
  • 64 bit input, 64 bit output.

64 bit M
64 bit C
DES Encryption
56 bits
7
DES Top View
56-bit Key
64-bit Input
48-bit K1
Generate keys
Permutation
Initial Permutation
48-bit K1
Round 1
48-bit K2
Round 2
...
48-bit K16
Round 16
Swap 32-bit halves
Swap
Final Permutation
Permutation
64-bit Output
8
Bit Permutation (1-to-1)
1 2 3 4 32
.

0 0 1 0 1
Input
1 bit
..
Output
1 0 1 1 1
22 6 13 32 3
9
Per-Round Key Generation
Initial Permutation of DES key
C i-1
D i-1
28 bits
28 bits
Circular Left Shift
Circular Left Shift
One round
Round 1,2,9,16 single shift Others two bits
Permutation with Discard
48 bits Ki
C i
D i
28 bits
28 bits
10
A DES Round
32 bits Ln
32 bits Rn
E
One Round Encryption
48 bits
Mangler Function
48 bits Ki
S-Boxes
P
32 bits
32 bits Ln1
32 bits Rn1
11
Mangler Function
The permutation produces spread among the
chunks/S-boxes!
12
Bits Expansion (1-to-m)
1 2 3 4 5 32
.
Input

0 0 1 0 1 1
Output
..
1 0 0 1 0 1 0 1
1 0
1 2 3 4 5 6 7 8
48
13
S-Box (Substitute and Shrink)
  • 48 bits gt 32 bits. (86 gt 84)
  • 2 bits used to select amongst 4 substitutions for
    the rest of the 4-bit quantity

14
S-Box Example (S-Box 1)
Each row and column contain different numbers.
0 1 2 3 4 5
6 7 8 9. 15
0 14 4 13 1 2
15 11 8 3
1 0 15 7 4 14
2 13 1 10
2 4 1 14 8 13
6 2 11 15
3 15 12 8 2 4
9 1 7 5
Example input 100110 output ???
15
DES Standard
  • Cipher Iterative Action
  • Input 64 bits
  • Key 48 bits
  • Output 64 bits
  • Key Generation Box
  • Input 56 bits
  • Output 48 bits

One round (Total 16 rounds)
16
DES Box Summary
  • Simple, easy to implement
  • Hardware/gigabits/second, software/megabits/second
  • 56-bit key DES may be acceptable for non-critical
    applications but triple DES (DES3) should be
    secure for most applications today
  • Supports several operation modes (ECB CBC, OFB,
    CFB) for different applications

17
Outlines
  • Strength/weakness of DES, AES
  • Public Key Cryptography
  • Modular Arithmetic
  • RSA

18
Avalanche Effect
  • Key desirable property of encryption alg
  • Where a change of one input or key bit results in
    changing more than half output bits
  • DES exhibits strong avalanche

19
Strength of DES Key Size
  • 56-bit keys have 256 7.2 x 1016 values
  • Brute force search looks hard
  • Recent advances have shown is possible
  • in 1997 on a huge cluster of computers over the
    Internet in a few months
  • in 1998 on dedicated hardware called DES
    cracker by EFF in a few days (220,000)
  • in 1999 above combined in 22hrs!
  • Still must be able to recognize plaintext
  • No big flaw for DES algorithms

20
DES Replacement
  • Triple-DES (3DES)
  • 168-bit key, no brute force attacks
  • Underlying encryption algorithm the same, no
    effective analytic attacks
  • Drawbacks
  • Performance no efficient software codes for
    DES/3DES
  • Efficiency/security bigger block size desirable
  • Advanced Encryption Standards (AES)
  • US NIST issued call for ciphers in 1997
  • Rijndael was selected as the AES in Oct-2000

21
AES
  • Private key symmetric block cipher
  • 128-bit data, 128/192/256-bit keys
  • Stronger faster than Triple-DES
  • Provide full specification design details
  • Evaluation criteria
  • security effort to practically cryptanalysis
  • cost computational
  • algorithm implementation characteristics

22
Outlines
  • Strength/weakness of DES, AES
  • Public Key Cryptography
  • Modular Arithmetic
  • RSA

23
Private-Key Cryptography
  • Private/secret/single key cryptography uses one
    key
  • Shared by both sender and receiver
  • If this key is disclosed communications are
    compromised
  • Also is symmetric, parties are equal
  • Hence does not protect sender from receiver
    forging a message claiming is sent by sender

24
Public-Key Cryptography
  • Probably most significant advance in the 3000
    year history of cryptography
  • Uses two keys a public a private key
  • Asymmetric since parties are not equal
  • Uses clever application of number theoretic
    concepts to function
  • Complements rather than replaces private key
    crypto

25
Public-Key Cryptography
  • Public-key/two-key/asymmetric cryptography
    involves the use of two keys
  • a public-key, which may be known by anybody, and
    can be used to encrypt messages, and verify
    signatures
  • a private-key, known only to the recipient, used
    to decrypt messages, and sign (create) signatures
  • Asymmetric because
  • those who encrypt messages or verify signatures
    cannot decrypt messages or create signatures

26
Public-Key Cryptography
27
Public-Key Characteristics
  • Public-Key algorithms rely on two keys with the
    characteristics that it is
  • computationally infeasible to find decryption key
    knowing only algorithm encryption key
  • computationally easy to en/decrypt messages when
    the relevant (en/decrypt) key is known
  • either of the two related keys can be used for
    encryption, with the other used for decryption
    (in some schemes)

28
Public-Key Cryptosystems
  • Two major applications
  • encryption/decryption (provide secrecy)
  • digital signatures (provide authentication)

29
Outlines
  • Strength/weakness of DES, AES
  • Public Key Cryptography
  • Modular Arithmetic
  • RSA

30
Modular Arithmetic
  • Public key algorithms are based on modular
    arithmetic.
  • Modular addition.
  • Modular multiplication.
  • Modular exponentiation.

31
Modular Addition
  • Addition modulo (mod) K
  • Poor cipher with (dkdm) mod K, e.g., if K10 and
    dk is the key.
  • Additive inverse addition mod K yields 0.
  • Decrypt by adding inverse.

32
Modular Multiplication
  • Multiplication modulo K
  • Multiplicative inverse multiplication mod K
    yields 1
  • Only some numbers have inverse

33
Modular Multiplication
  • Only the numbers relatively prime to n will have
    mod n multiplicative inverse
  • x, m relative prime no other common factor than
    1
  • Eg. 8 15 are relatively prime - factors of 8
    are 1,2,4,8 and of 15 are 1,3,5,15 and 1 is the
    only common factor

34
Totient Function
  • Totient function ø(n) number of integers less
    than n relatively prime to n
  • if n is prime,
  • ø(n)n-1
  • if np?q, and p, q are primes, p ! q
  • ø(n)(p-1)(q-1)
  • E.g.,
  • ø(37) 36
  • ø(21) (31)(71) 26 12

35
Modular Exponentiation
36
Modular Exponentiation
  • xy mod n xy mod ø(n) mod n
  • if y 1 mod ø(n) then xy mod n x mod n

37
Outlines
  • Strength/weakness of DES, AES
  • Public Key Cryptography
  • Modular Arithmetic
  • RSA

38
RSA (Rivest, Shamir, Adleman)
  • The most popular one.
  • Support both public key encryption and digital
    signature.
  • Assumption/theoretical basis
  • Factoring a big number is hard.
  • Variable key length (usually 512 bits).
  • Variable plaintext block size.
  • Plaintext must be smaller than the key.
  • Ciphertext block size is the same as the key
    length.

39
What Is RSA?
  • To generate key pair
  • Pick large primes (gt 256 bits each) p and q
  • Let n pq, keep your p and q to yourself!
  • For public key, choose e that is relatively
    prime to ø(n) (p-1)(q-1), let pub lte,ngt
  • For private key, find d that is the
    multiplicative inverse of e mod ø(n), i.e., ed
    1 mod ø(n), let priv ltd,ngt

40
RSA Example
  • Select primes p17 q11
  • Compute n pq 1711187
  • Compute ø(n)(p1)(q-1)1610160
  • Select e gcd(e,160)1 choose e7
  • Determine d de1 mod 160 and d lt 160 Value is
    d23 since 237161 101601
  • Publish public key KU7,187
  • Keep secret private key KR23,17,11

41
How Does RSA Work?
  • Given pub lte, ngt and priv ltd, ngt
  • encryption c me mod n, m lt n
  • decryption m cd mod n
  • signature s md mod n, m lt n
  • verification m se mod n
  • given message M 88 (nb. 88lt187)
  • encryption
  • C 887 mod 187 11
  • decryption
  • M 1123 mod 187 88

42
Why Does RSA Work?
  • Given pub lte, ngt and priv ltd, ngt
  • n pq, ø(n) (p-1)(q-1)
  • ed 1 mod ø(n)
  • xe?d x mod n
  • encryption c me mod n
  • decryption m cd mod n me?d mod n m mod n
    m (since m lt n)
  • digital signature (similar)

43
Is RSA Secure?
  • Factoring 512-bit number is very hard!
  • But if you can factor big number n then given
    public key lte,ngt, you can find d, hence the
    private key by
  • Knowing factors p, q, such that, n pq
  • Then ø(n) (p-1)(q-1)
  • Then d such that ed 1 mod ø(n)
  • Threat
  • Moores law
  • Refinement of factorizing algorithms
  • For the near future, a key of 1024 or 2048 bits
    needed

44
Symmetric (DES) vs. Public Key (RSA)
  • Exponentiation of RSA is expensive !
  • AES and DES are much faster
  • 100 times faster in software
  • 1,000 to 10,000 times faster in hardware
  • RSA often used in combination in AES and DES
  • Pass the session key with RSA
Write a Comment
User Comments (0)
About PowerShow.com