Title: Dependence of the FeIIIIIEDTA complex on pH
1Dependence of the FeII/IIIEDTA complex on pH
- Ryan Hutcheson and I. Francis Cheng
- Department of Chemistry, University of Idaho
- Moscow, ID 83844
- ifcheng_at_uidaho.edu
2Importance
- First study of the pH dependence of FeII/IIIEDTA
- Green chemistry optimization of O2 activation
and pH dependence of the Fenton Reaction - Antioxidants FeII/IIIEDTA is a good model for
low molecular weight biological ligands
3FeIIIEDTA Speciation Diagram
FeIIIEDTA
FeIII(OH)2EDTA
FeIII(OH)EDTA
FeIIIHEDTA
4FeIIEDTA Speciation Diagram
FeIIEDTA
FeII(OH)2EDTA
Free Fe2
FeII(OH)EDTA
FeIIHEDTA
FeIIH2EDTA
5Electrocatalytic (EC) Mechanismand Cyclic
Voltammetry
FeIII-L e- ? FeII-L FeII-L H2O2 ? FeIII-L OH
OH-
E O ne- R C R Z O Y
Regeneration of the FeIIIEDTA within the vicinity
of the electrode causes amplification of the CV
wave
6Conditions
- All scans
- 10mL aqueous soln purged w/ N2 for 10-15min
- 0.1M Buffer - HOAcCl, HOAc, HEPES
- 5mV/s sweep rate
- BAS carbon disk electrode
- BAS Ag/AgCl reference electrode
- Spectroscopic graphite rod counter electrode
- BAS CV-50w potentiostat
- Cyclic Voltammetric scans of FeIIIEDTA
- 1mM FeIIIEDTA
- Catalytic scans (Fenton Reaction)
- 0.1mM FeIIIEDTA catalytic scans
- 20mM H2O2
7Cyclic Voltammagrams of FeII/IIIEDTA
1mM FeIIIEDTA 0.1M buffer 5mV/s scan rate
FeIIIEDTA e- ? FeIIEDTA
pH 5.5
FeIIIEDTA e- ? FeIIEDTA
pH 2
pH 11
8E1/2 vs. pH (FeIIIEDTA)
FeIII(OH)2EDTA
FeIIIEDTA
FeIII(OH)EDTA
E1/2
FeIIIHEDTA
9E1/2 vs. pH (FeIIEDTA)
FeII(OH)2EDTA
FeIIEDTA
Free Fe2
FeII(OH)EDTA
E1/2
FeIIHEDTA
FeIIH2EDTA
10O2 Activation
- First example of abiotic RTP oxygen activation
able to destructively oxidize organics. - Oxygen activation is pH dependent.
Noradoun,C., Industrial and Engineering Chemistry
Research, (2003), 42(21), 5024-5030.
11Reaction Vessel
Air flow
2.0 mL 50/50 hexane/ethyl acetate (extraction
only)
10.0 mL water
pH 5.5 6.5, unbuffered.
0.44mM EDTA
0.44mM Xenobiotic
Stir bar
0.5g Fe 20 or 40-70 mesh
Noradoun,C., Industrial and Engineering Chemistry
Research, (2003), 42(21), 5024-5030.
12Xenobiotic Oxidation Studies
H2O2
O2 2H
EDTA
Iron particles 0.1-1 mm
FeIIEDTA
Fe2
FeIIIEDTA HO- HO.
Aqueous Xenobiotic
LMW acids
Noradoun,C., Industrial and Engineering Chemistry
Research, (2003), 42(21), 5024-5030.
13Proposed O2 Reduction Mechanism by Van Eldik
FeIIEDTAH(H2O) O2 ? FeIIEDTAH(O2)
H2O FeIIEDTAH(O2) ? FeIIIEDTAH(O2-) FeIIIEDTAH(O
2-) FeIIEDTAH(H2O) ? FeIIIEDTAH(O22-)FeIIIEDTAH
H2O FeIIIEDTAH(O22-)FeIIIEDTAH H2O
2H ? 2FeIIIEDTAH(H2O) H2O2 2FeIIEDTAH(H2O)
H2O2 ? 2FeIIIEDTAH(H2O) H2O Proposes H2O2 as
intermediate Saw no evidence of H2O2
Van Eldik, R. Inorg. Chem, 1997, 36, 4115-4120
14Van Eldiks O2 Reduction
Van Eldik, R. Inorg. Chem, 1997, 36, 4115-4120
15Structures
FeIIEDTA FeIIHEDTA CN 7
FeIIIEDTA (CN 7)
FeIIIHEDTA (CN 6)
Monocapped trigonal prismatic (MCP)
Pentagonal-bipyramidal (PB)
Octahedral
Square Pyramidal
O
N
N
O
O
O
Miyoshi, K., Inor. Chem. Acta., 1995, 230,
119-125. Heinemann, F.W., Inor. Chem. Acta.,
2002, 337, 317-327.
16Structures contd
FeIIEDTA
FeIIHEDTA
gt pH 4
pH 3 pH 4
MCP
PB
Active site
Active site
Free Fe2
lt pH 3
Miyoshi, K., Inor. Chem. Acta., 1995, 230,
119-125.
17Fenton Reaction
FeIIIL e-? FeIIL
Edepends on ligand H2O2 e- ?
HO OH- E0.32V SHE _at_pH 7 FeIIL H2O2
? FeIIIL HO OH-
Only iron complexes with E0 negative of 0.32 V
are thermodynamically capable of hydrogen
peroxide reduction. However, Fenton inactivity
may result from kinetic factors as well.
18Electrocatalytic CV
0.1mM FeIIIEDTA 20mM H202 0.1M buffer 5mV/s scan
rate
pH 4
pH 3.5
FeIIIEDTA e- ? FeIIEDTA
pH 4
pH 4.5
pH 3
pH 2.5
pH 2
19Fenton Reactivity vs. pH
FeIIEDTA
Free Fe2
FeIIHEDTA
FeIIH2EDTA
Each data point was collected 9 times.
20Conclusion
- E1/2 of the FeII/IIIEDTA complex depends on pH,
corresponding to the pH distribution diagram. - Fenton reactivity increases around pH 3.5 due to
geometric rearrangement of the FeIIEDTA complex
(MCP to PB).
21Future
- pH dependence of Fenton reactivity at higher pH
values - Expand van Eldiks O2 activation to higher pH
values
22Acknowledgments
- National Institute of Health
- National Science Foundation
- University of Idaho
- Malcom and Carol Renfrew
- Dr. Cheng Group
- Dr. Mark Engelmann
23Nernst Equations E1/2
- pH 2 to pH 3.5
- E1/2(mV) 83mV 69.5mV(pH )
- pH 3.5 to 7
- E1/2(mV) -89.5mV 5.6mV
- pH 7 to 9
- E1/2(mV) 202.8mV 41.8mV(pH)
- pH 9 to 11
- E1/2(mV) 409.1mV 64.6mV(pH)
24FeIIIEDTA Model
EDTA-4 H ? HEDTA-3
log ß 9.52 HEDTA-3 H ?
H2EDTA-2
log ß 6.13 H2EDTA-2 H ? H3EDTA-
log ß
2.69 H3EDTA- H ? H4EDTA
log ß 2.00 H4EDTA H ?
H5EDTA
log ß 1.5 H5EDTA H ? H6EDTA2
log ß 0.0 EDTA-4
Fe3 ? FeIIIEDTA-
log ß 25.1 FeIIIEDTA- H ?
FeIIIHEDTA
log ß 1.3 FeIIIEDTA- H20 ? FeIII(OH)EDTA-2
H log ß 17.71 2FeIII(OH)EDT
A-2 ? FeIII2(OH)2EDTA2-4
log ß 38.22 FeIII(OH)EDTA-2 2H2O ?
FeIII(OH)2EDTA-3 2H log ß 4.26 H OH-
? H2O
log ß 13.76 Fe3 OH- ?
FeIII(OH)2
log ß 11.27 Fe3 2OH- ? FeIII(OH)2
log ß
23.0 Fe3 3OH- ? FeIII(OH)3
log ß 29.77 Fe3
4OH- ? FeIII(OH)4-
log ß 34.4 2Fe3 2OH- ?
FeIII2(OH)24
log ß 24.5 3Fe3 4OH- ? FeIII3(OH)48
log ß 49.7
25FeIIEDTA Model
EDTA-4 H ? HEDTA-3
log ß 9.52 HEDTA-3 H ?
H2EDTA-2
log ß 6.13 H2EDTA-2 H ? H3EDTA-
log ß
2.69 H3EDTA- H ? H4EDTA
log ß 2.00 H4EDTA H ?
H5EDTA
log ß 1.5 H5EDTA H ? H6EDTA2
log ß 0.0 EDTA-4
Fe2 ? FeIIEDTA-2
log ß 14.3 HEDTA-3 Fe2 ? FeIIHEDTA-
log ß
6.82 H2EDTA-2 Fe2 ? FeIIH2EDTA
log ß 13.41 FeIIEDTA-2 OH-
? FeII(OH)EDTA-3 log
ß 18.93 FeII(OH)EDTA-3 OH- ? FeII(OH)2EDTA-4
log ß 13.03 Fe2 OH- ?
FeII(OH)-
log ß 4.2 Fe2 2OH- ? FeII(OH)2
log ß
7.5 Fe2 3OH- ? FeII(OH)3-
log ß 13 Fe2 4OH- ?
FeII(OH)4-2
log ß 10