Compression opportunities using progressive meshes - PowerPoint PPT Presentation

About This Presentation
Title:

Compression opportunities using progressive meshes

Description:

Compression opportunities using progressive meshes. Hugues Hoppe. Microsoft ... bit/vert. visually. identical to. original PM ! vt. vs. Restrict vs to equal vs. ... – PowerPoint PPT presentation

Number of Views:97
Avg rating:3.0/5.0
Slides: 48
Provided by: hugues
Category:

less

Transcript and Presenter's Notes

Title: Compression opportunities using progressive meshes


1
Compression opportunities using progressive meshes
  • Hugues Hoppe
  • Microsoft Research
  • SIGGRAPH 98 course 3D Geometry compression

2
Triangle Meshes
3
Triangle Meshes
v2,f1 (nx,ny,nz) (u,v)v2,f2 (nx,ny,nz)
(u,v)
corner attrib.
4
Complex meshes
43,000 faces
lots of faces!
Challenges - rendering - storage - transmission
geometrycompression
5
Talk outline
  • Progressive mesh (PM) representation
  • Analysis of PM compression
  • Improved PM compression
  • Progressive simplicial complex (PSC) repr.

6
Progressive mesh representation
  • Basic idea
  • Simplify arbitrary mesh through sequence of
    transformations.
  • Record
  • simplified meshsequence of inverse
    transformations

7
Simplification Edge collapse
ecol(vs ,vt , vs )

vt
vl
vl
vr
vr
vs

vs
13,546
500
152
150 faces
M0
M1
M175
Mn
ecol0
ecoln-1
ecoli
8
Invertible! Vertex split transformation
attributes
vspl(vs ,vl ,vr , vs ,vt ,)


vt

vl
vr
vl
vr
vs
vs

9
Reconstruction process
10
PM benefits
PM
Mn
Vn
lossless
M0
Fn
vspl
attributes
  • progressive transmission
  • continuous-resolution
  • smooth LOD
  • geometry compression
  • single resolution

11
Application Progressive transmission
  • Transmit records progressively

time
M0
Receiver displays
M0
( progressive GIF JPEG)
12
Application Continuous-resolution LOD
  • From PM, extract Mi of any desired complexity.

3,478 faces?
M0
vspl0
vspl1
vspli-1
vspln-1
Mi
13
Property Vertex correspondence
Mc
Mf
M0
v1
v1
Mn
v2
v2
v3
v3
v4
v5
v6
v7
v8
14
Application Smooth transitions
Mc
Mf
M0
v1
v1
Mn
v2
v2
v3
v3
v4
v5
Mfc
v6
v7
V
F
V
v8
can form a smooth visual transition geomorph
15
BUT, geometry compression?
M0
vspl0
vspl1
vspli-1
vspln-1
Mn
  • M0 is typically small
  • key is encoding of vspli

16
Vertex split encoding
Record
vspli (vs ,vl ,vr ,vs ,vt ,)

  • vs (log2i bits)
  • vl vr (5 bits)

vt

vl
vl
vr
vr
vs
vs

Analysis
  • connectivity n(log2n4) bits vs. n(6log2n) bits

17
Vertex split encoding
Record
vspli (vs ,vl ,vr ,vs ,vt ,)

  • vs (log2i bits)
  • vl vr (5 bits)

vt

vl
vl
vr
vr
vs
vs

Analysis
  • connectivity n(log2n4) bits vs. n(6log2n) bits

18
Vertex split encoding
Record
vspli (vs ,vl ,vr ,vs ,vt ,)

  • vs (log2i bits)
  • vl vr (5 bits)

vt

vl
vl
vr
vr
vs
vs
  • predict face attrib.

Analysis
  • connectivity n(log2n4) bits vs. n(6log2n) bits
  • geometry 40n bits vs. 96n bits

19
Summary of vsplit encoding
?
(n is vertices, 2n is faces)
42,712 facesn21,373151 Kbytes (ignoring
corners)
20
Improved PM compression
  • Connectivity
  • group vsplits ? forest splits Taubin etal98
  • permute vsplits
  • Geometry
  • apply smoothing Taubin etal98
  • local prediction single delta
  • Face attributes
  • already negligible
  • Corner attributes
  • wedge data structure

21
Compression of connectivity
  • Detail flclw , nrot

vl
vr
vs
  • Problem locating vsplit on mesh (using either
    flclw or vs ) requires log2i bits.

22
Progressive Forest Split (PFS)
Taubin,Gueziec,Horn,Lazarus98
M0
vspl0
vspl1
vspl5
vspln-1
vspl2
vspl3
vspl4
  • PM n(4log2n) bits
  • PFS n(8..10) bits

23
Other solution permutation of vsplits
M0
flclw,1
flclw,2
M0
?flclw
  • We record ?flclw and minimize ?flclw by permuting
    vsplits.

24
Legal vsplit permutations
  • Determine dependencies between vsplits
  • Xia Varshney 96
  • Hoppe 97
  • vsplit is candidate if it has no dependencies.
  • Greedy algorithm
  • Maintain candidate vsplits in balanced tree,
    sorted by flclw .
  • Remove vsplit with smallest ?flclw and update
    candidate tree.

25
Result of permuting vsplits
9.7n
(log2n4)n
9.7n10.3n
(now linear)
  • Drawback intermediate meshes Mi (0ltiltn) lose
    geometric accuracy.
  • O(n log n) bits to undo permutation.

26
Layered permutations
(mesh complexity increasing exponentially)
checkpoints
M0
vspl0
vspl1
vspln-1
vspl2
vspl3
vspl4
vspl5
vspl6
vspl7
vspl8
vspl9
vspl10
M0
27
Results using layered permutations
checkpoints
growth factor
connectivitybits (nverts)
1
549
9.7n
0.1 bit/vert
9
2.00
9.8n
13
1.63
9.8n
visuallyidentical tooriginal PM !
19
1.40
9.9n
24
1.30
10.0n
35
1.20
10.2n
66
1.10
10.5n
20,373
1.00
16.4n
28
Geometry local prediction delta
vt

vs

vs
  • Predict position of vt .

29
Result of predicted delta
9.7n
20.9n
?
  • Intermediate meshes Mi (0ltiltn) have minor loss
    in geometric accuracy.

30
Corner attributes
vertex
face
31
Wedge data structure
vertex
wedge
face
32
Vsplit encoding of wedges
(6 new corners)
1..6 wedge attribute deltas
33
Results using wedges
9.7n
20.9n
23.7n
10 corner continuity booleans 2.5n bits wedge
attribute deltas 21.2n bits
(16-bit nx,ny,nz at corners)
34
Estimating normals from wedges
9.7n
20.9n
2.5n
88 Kbytes
original
35
Progressive Simplicial Complexes
  • SIGGRAPH 97
  • (Joint work with Jovan Popovic)

36
PM restrictions
  • Supports only meshes (orientable,
    2-dimensional manifolds)
  • Preserves topological type

M0
Mn
Mi
167,744
8,000
2,522
37
Progressive Simplicial Complexes
  • Represent arbitrary triangulations
  • any dimension,
  • non-orientable,
  • non-manifold,
  • non-regular,
  • Progressively encode both geometry and topology.

38
Generalization
PM
PSC
edge collapse(ecol)
vertex split(vspl)
39
LOD sequence
M1
M22
M116
Mn
gvspl1
gvspli
gvspln-1
40
Generalized vertex split
  • Connectivity
  • PM (log2n4)n bits
  • PSC (log2n7)n bits

41
Space analysis
geometry!
connectivity
connectivity
materials
42
PSC analysis
PSC
Mn
Vn
lossless
M1
gvspl
Kn
single vertex
arbitrarysimplicial complex
() progressive geometry and topology () no
base mesh () 3 bit / vertex overhead ()
slower decompression
43
Summary Progressive geometry
  • Connectivity
  • group vsplits ? forest splits Taubin etal98
  • permute vsplits
  • Geometry
  • apply smoothing Taubin etal98
  • local prediction single delta
  • Face attributes
  • already negligible
  • Corner attributes
  • wedge data structure

44
Conclusions
  • Geometry storage overwhelms connectivity,
    particularly for simplified meshes.
  • Progressive representations
  • reasonable compression
  • benefits LOD
  • Texture coordinates?

45
Beyond Gouraud shading
44,000 triangles
  • Future
  • bump mapping
  • environment mapping

Texture mapping!
200n bits (JPEG)
Cohen-etal98
46
Simultaneous streaming
progressivegeometry
progressivetexture
network
runtime tradeoffof geometry texture(platform-d
ependent)
viewer / application
47
References
  • H. Hoppe. Progressive meshes. Computer Graphics
    (SIGGRAPH 96), pages 99-108.
  • J. Popovic, H. Hoppe. Progressive simplicial
    complexes. Computer Graphics (SIGGRAPH 97),
    pages 217-224.
  • H. Hoppe. Efficient implementation of
    progressive meshes. Computers Graphics, Vol.
    22, pages 27-36, 1998.
  • http//research.microsoft.com/hoppe/
Write a Comment
User Comments (0)
About PowerShow.com