Title: K.H. Schmidt for the CHARMS collaboration
1Spallation Reactions - Physics and Applications
- K.-H. Schmidt for the CHARMS collaboration
- Gesellschaft für Schwerionenforschung (GSI)
- Darmstadt, Germany
work supported by EU (EURISOL and EUROTRANS)
2Spallation reactions physics and applications
Outline
- Definition - Applications - Experiments -
Physics and models - Conclusion
3Definition
4What is a spallation reaction ?
Violent collision of nucleons (or particles) with
heavy nuclei. First studied with cosmic rays.
Schopper et al. Naturw. 25 (1937) 557
Collision of a µ of 41.2 GeV with an iron
nucleus, recorded by the KARMEN detector.
Disintegration (spallation) of the nucleus in
many pieces. Production of a variety of different
particles and fragments.
5Applications
6Importance of spallation reactions
- EOS of nuclear matter - Spallation is a way
to heat nuclear matter ? thermal break-up - Astrophysics - Reactions of cosmic rays with
interstellar medium ? origin of c.r. -
Nucleosynthesis in turbulence of Supernova
explosions - Spallation neutron sources - Efficient way
for producing neutrons - ADS (Accelerator-driven system) - Project
for incinerating radioactive waste - Secondary-beam facilities - Production of
rare isotopes - Radioprotection and medicine
7Neutron sources
Example Layout of SINQ ? (Study of
condensedmatter.)
8ISOL-based secondary-beam facilities
9ADS (Accelerator-driven system)
Proton accelerator ( 1 GeV)
Subcritical fission reactor
Spallation neutron source
Purpose Incineration of nuclear waste Prototype
Myrrha (Mol, Belgium)
10Experiments
11Detector systems
- Normal kinematics (particle on nucleus)
- Neutrons (d2Y/(dE d?)) (kinematical detectors)
- Neutrons (total yield) (moderation and capture
of neutrons) - Light charged particles (d2Y/(dE d?)) (?E -E,
e.g. silicon) - Heavy residues (a few independent yields,
cumulative yields)(irradiation, off-line gamma
spectroscopy / accelerator mass spectrometry)
- Inverse kinematics (nucleus on light target)
- Heavy residues (Y(Z,A), dY/dv)
(in-flight identification B? ToF ?E) - Neutrons and light charged particles (advanced
installations at FAIR_at_GSI)
12Double-differential neutron spectra
Neutrons in forward direction reach up to the
energy of the projectiles.
SATURNE experiment,S. Leray et al. (2002)
13Spectra of light fragments
Almost thermal energy spectrum of light fragments.
PISA experiment, Jülich, F. Goldenbaum et al.
(2003)
14Excitation functions of heavy residues
Independent and cumulative yields by off-line
gamma spectroscopy
Titarenko et al, 2005
15GSI facility ? inverse kinematics
- UNILAC Up to 20 A MeV
- SIS 50 2000 A MeV, up to 1011
particles/spill - Beams of all stable nuclides
up to 238U
16Fragment Separator (FRS)
Nuclide identification (238U p, M. V.
Ricciardi)
?max 15 mrad ?p/p ? 1.5
ToF ? ?? x1, x2 ? B? ?E ? Z
Resolution - ?(??)/?? ? 510-4 - ?Z ?
0.4 - ?A / A ? 2.5?10-3
17Benefit of inverse kinematics
Protons (553 MeV) on lead
208Pb (500 A MeV) on hydrogen
Experiments in inverse kinematics Complete
overview on nuclide production (T1/2gt100 ns) E
gt several 100 A MeV
18Spallation of 238U complete overview
Data measured at GSI
Ricciardi et al, Phys. Rev. C 73 (2006) 014607
Bernas et al., Nucl. Phys. A 765 (2006) 197
Armbruster et al., Phys. Rev. Lett. 93 (2004)
212701 Taïeb et al., Nucl. Phys. A 724 (2003)
413 Bernas et al., Nucl. Phys. A 725 (2003) 213
www.gsi.de/charms/data.htm
More than 1000 different nuclides
observed. Features of spallation-evaporation /
-fission / -IMF emission
19Velocity distributions
Typical velocity profiles arecharacteristic for
thereaction mechanism (evaporation,fission
andmultifragmentation)
P. Napolitani, 2007
20Systematic studies
www.gsi.de/charms/data.htm
21Collaboration
GSI P. Armbruster, A. Bacquias, T. Enqvist, L.
Giot, K. Helariutta, V. Henzl, D. Henzlova, B.
Jurado, A. Kelic, P. Nadtochy, R. Pleskac, M. V.
Ricciardi, K.-H. Schmidt, C. Schmitt, F. Vives,
O. Yordanov IPN-Paris L. Audouin, M. Bernas, B.
Mustapha, P. Napolitani, F. Rejmund, C. Stéphan,
J. Taïeb, L. Tassan-Got CEA-Saclay A. Boudard,
L. Donadille, J.-E. Ducret, B. Fernandez, R.
Legran, S. Leray, C. Villagrasa, C. Volant, W.
Wlazlo University Santiago de Compostela J.
Benlliure, E. Casarejos, M. Fernandez, J.
Pereira CENBG-Bordeaux S. Czajkowski, M.
Pravikoff
22R3B_at_FAIR (New project at GSI)
- Full identification of heavy residues with
simultaneous measurement of neutrons, light
charged particles and gammas with new R3B
magnetic spectrometer. ? Aiming for a
kinematically complete experiment.
23Physics and models
24Nucleon-nucleus collision at 1 A GeV
No consistent uniform description of the
spallation process available.
Decisive parameter de Broglie wavelength of a
nucleon ?h/p
Compared to nuclear radius (r 1.16 fm ? A1/3)
or range of nuclear force ( ? 1 fm)
Spallation reaction collisions of individual
nucleons !
25Modeling of spallation reactions
Specialized codes for different steps of the
reaction
1. Intranuclear cascade (INCL, ISABEL,
...) (quasi-free nucleon-nucleon collisions
?high-energy n, p ..)
2. Exciton model (sequence of particle-hole
excitations ?pre-equilibrium emission,included
in INCL) ----------------------------
4. Evaporation code(ABLA07, ...) (evaporation of
particles and fragments, fission)
3. Multifragmentation (expansion and thermal
break-up)
26Thermal expansion
Statistical model The nucleus assumes the
configuration which offers maximum number of
states. This is also true for the volume.
?eS level density S2v(aE)Fermi
gas aVlevel-density parameter grows
withvolume E E0 - c(V-V0)2 parabolic
dependence of nuclear binding onvolume or
density Sv(V(E0-c(V-V0)2)
27Multifragmentation
Expansion may lead to multifragmentation. (SMM,
ABLA07)
28The evaporation corridor
Decisive influence of evaporation on the nuclide
distribution.
Residues tend to follow the evaporation corridor
(Dufour, Charity).
29Fission
Fission barrier ? Interplay of surface and
Coulomb energy.
30General features of fission
Potential barrier as a function of mass asymmetry.
Symmetric fission for heavy systems
31Experimental information low energy
Experimental survey at GSI by use of secondary
beams
K.-H. Schmidt et al., NPA 665 (2000) 221
32Modeling multi-modal fission
E 60 MeV
20 MeV
10 MeV
black data, red simulation with ABLA07
Many different nuclei with different E
contribute to fission.
33Dynamics of fission
Fission is a dynamical process, described by the
Langevin equation.
34Langevin trajectories
Fission barrier
Groundstate
Fission is hindered by dynamics with respect to
evaporation.
35Generalized fission
Potential barrier as a function of mass asymmetry.
Continuous mass distribution from particle
evaporation to symmetric fission (Moretto)
36Emission of intermediate-mass fragments
(only n,p,a) (n, p, all fragments)
Data 209Bi p Yu. E. Titarenko et al., Nucl.
Instrum. Methods A 562 (2006) 801
Evaporation of IMF (very asymmetric fission) must
be considered.
37Model Calculation
INCL4 ABLA07
38Conclusions
Spallation reactions
- Many fields of application ? high interest for
good understanding - Two experimental
approaches - Direct kinematics - light
particles yields and energy distributions
heavy residues only long-lived species and
cumulative yields - Inverse kinematics
heavy residues complete overview (1000 nuclides
/ system) - velocity spectra information
on reaction mechanism - new-generation
(complete) experiments at R3B_at_FAIR - Elaborate
codes for the reaction stages (e.g. INCL4
ABLA07) - INC ? (Exciton) ? (Thermal break-up)
? Evaporation-fission
39Additional slides
40Experimental challenge
Short-lived as well as stable nuclei have to be
detected.
41Excitation functions
Independent and cumulative yields
- About 100 nuclei/system - Uncertainty 7 30
Additional information - Miah et al, Nucl. Sc.
Tech. Suppl. 2 (2002) 369 - Schiekel et al, Nucl.
Instr. Meth. B114 (1996) 91 - Adilbish et al,
Radiochem. Radioanal. Lett. 45 (1980) 227 - Chu
et al, Phys. Rev. C 15 (1977) 352
Titarenko et al, 2005
42Velocity distributions
238U (1 AGeV) 2H
FISSION
FRAGMENTATION
For each nucleus production cross section,
velocity and production mechanism
Pereira, PhD thesis
43Experimental progress by inverse kinematics
More than 1000 nuclei/system measured
- Data accuracy
- Statistic below 3
- Systematic 9 - 15
Data available at www.gsi.de/charms/data.htm